哈密顿力学

本文详细介绍了哈密顿力学的核心概念,包括勒让德变换、正则方程、能量守恒、泊松括号以及正则变换。讨论了泊松括号的性质和泊松定理,强调了正则变换在保持运动方程形式不变中的作用。此外,还探讨了哈密顿-雅可比方程和分离变量法在解决动力学问题中的应用,举例展示了球坐标、抛物线坐标和椭圆坐标下的哈密顿-雅可比方程解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

勒让德变换和正则方程

作为坐标和速度的函数的拉格朗日函数,其全微分等于
d L = ∂ L ∂ q i d q i + ∂ L ∂ q ˙ i d q ˙ i d L = \frac{\partial L}{\partial q_i}dq_i + \frac{\partial L}{\partial\dot q_i}d\dot q_i dL=qiLdqi+q˙iLdq˙i
因为按定义导数 ∂ L / ∂ q ˙ i \partial L / \partial\dot q_i L/q˙i是广义动量,又根据拉格朗日方程有 ∂ L / ∂ q i = p ˙ i \partial L / \partial q_i = \dot p_i L/qi=p˙i,所以上面这个表达式可以写成
d L = p ˙ i d q i + p i d q ˙ i dL = \dot p_idq_i + p_id\dot q_i dL=p˙idqi+pidq˙i
现在将上式的第二项写成
p i d q ˙ i = d ( p i q ˙ i ) − q ˙ i d p i p_id\dot q_i = d(p_i\dot q_i) - \dot q_idp_i pidq˙i=d(piq˙i)q˙idpi
将全微分 d ( p i q ˙ i ) d(p_i\dot q_i) d(piq˙i)移到等式左边并改变符号,可得
d ( p i q ˙ i − L ) = q ˙ i d p i − p ˙ i d q i d(p_i\dot q_i - L) = \dot q_idp_i - \dot p_idq_i d(piq˙iL)=q˙idpip˙idqi
注意到上式右边不含 d q ˙ i d\dot q_i dq˙i,可知微分的变量是用广义坐标和广义动量表示的系统的能量,称为系统的哈密顿函数
H ( p , q , t ) = p i q ˙ i − L H(p, q, t) = p_i\dot q_i - L H(p,q,t)=piq˙iL
由其中独立变量为坐标和动量的微分等式
d H = q ˙ i d p i − p ˙ i d q i dH = \dot q_idp_i - \dot p_idq_i dH=q˙idpip˙idqi
可以得出方程
q ˙ i = ∂ H ∂ p i ,   p ˙ i = − ∂ H ∂ q i \dot q_i = \frac{\partial H}{\partial p_i}, ~ \dot p_i = -\frac{\partial H}{\partial q_i} q˙i=piH, p˙i=qiH
这些就是用变量 p p p q q q表示的所要求的运动方程,称为哈密顿方程。它们是关于 2 s 2s 2s个未知函数 p i ( t ) p_i(t) pi(t) q i ( t ) q_i(t) qi(t) 2 s 2s 2s个一阶微分方程组,代替拉格朗日方法的 s s s个二阶方程。由于这些方程的形式简单并且对称,也称之为正则方程。

能量守恒

哈密顿函数对时间的全导数为
d H d t = ∂ H ∂ t + ∂ H ∂ q i q ˙ i + ∂ H ∂ p i p ˙ i \frac{dH}{dt} = \frac{\partial H}{\partial t} + \frac{\partial H}{\partial q_i}\dot q_i + \frac{\partial H}{\partial p_i}\dot p_i dtdH=tH+qiHq˙i+piHp˙i
将正则方程代入,上式后两项抵消,因此
d H d t = ∂ H ∂ t \frac{dH}{dt} = \frac{\partial H}{\partial t} dtdH=tH
特别地,如果哈密顿函数不显含时间,则 d H / d t = 0 dH / dt = 0 dH/dt=0,即得到能量守恒定律。

泊松括号

f ( p , q , t ) f(p, q, t) f(p,q,t)是坐标、动量和时间的某个函数。它对时间的全导数为
d f d t = ∂ f ∂ t + ∂ f ∂ q i q ˙ i + ∂ f ∂ p i p ˙ i \frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial q_i}\dot q_i + \frac{\partial f}{\partial p_i}\dot p_i dtdf=tf+qifq˙i+pifp˙i
代入由哈密顿方程给出的 q ˙ , p ˙ \dot q, \dot p q˙,p˙的表达式,得
d f d t = ∂ f ∂ t + { H , f } \frac{df}{dt} = \frac{\partial f}{\partial t} + \{H, f\} dtdf=tf+{ H,f}
其中引入了记号
{ H , f } = ∂ H ∂ p i ∂ f ∂ q i − ∂ H ∂ q i ∂ f ∂ p i \{H, f\} = \frac{\partial H}{\partial p_i}\frac{\partial f}{\partial q_i} - \frac{\partial H}{\partial q_i}\frac{\partial f}{\partial p_i} { H,f}=piHqifqiHpif
该记号称为量 H H H f f f的泊松括号。
我们知道,如果动力学变量的某个函数当系统运动时保持不变,则称之为运动积分。由前述可知, f f f是运动积分( d f / d t = 0 df / dt = 0 df/dt=0)的条件可以写为
∂ f ∂ t + { H , f } = 0 \frac{\partial f}{\partial t} + \{H, f\} = 0 tf+{ H,f}=0
如果运动积分不显含时间,则
{ H , f } = 0 \{H, f\} = 0 { H,f}=0
即运动积分 f f f和哈密顿函数的泊松括号必等于零。
对于任意一对变量 f , g f, g f,g,泊松括号可以类似地定义为
{ f , g } = ∂ f ∂ p i ∂ g ∂ q i − ∂ f ∂ q i ∂ g ∂ p i \{f, g\} = \frac{\partial f}{\partial p_i}\frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i}\frac{\partial g}{\partial p_i} { f,g}=pifqigqifpig

性质

由定义容易推出泊松括号的如下性质
{ f , g } = − { g , f } { f , c } = 0 { f 1 + f 2 , g } = { f 1 , g } + { f 2 , g } { f 1 f 2 , g } = f 1 { f 2 , g } + f 2 { f 1 , g } ∂ ∂ t { f , g } = { ∂ f ∂ t , g } + { f , ∂ g ∂ t } \begin{array}{ll} \{f, g\} &= -\{g, f\} \\ \{f, c\} &= 0 \\ \{f_1 + f_2, g\} &= \{f_1, g\} + \{f_2, g\} \\ \{f_1f_2, g\} &= f_1\{f_2, g\} + f_2\{f_1, g\} \\ \displaystyle\frac{\partial}{\partial t}\{f, g\} &= \{\displaystyle\frac{\partial f}{\partial t}, g\} + \{f, \displaystyle\frac{\partial g}{\partial t}\}\\ \end{array} { f,g}{ f,c}{ f1+f2,g}{ f1f2,g}t{ f,g}={ g,f}=0={ f1,g}+{ f2,g}=f1{ f2,g}+f2{ f1,g}={ tf,g}+{ f,tg}
如果函数 f f f g g g之一是广义坐标或者广义动量,则泊松括号简化为偏导数:
{ f , q i } = ∂ f ∂ p i { f , p i } = − ∂ f ∂ q i \begin{array}{ll} \{f, q_i\} &= \displaystyle\frac{\partial f}{\partial p_i} \\ \{f, p_i\} &= -\displaystyle\frac{\partial f}{\partial q_i} \\ \end{array} { f,qi}{ f,pi}=pif=qif
作为上式的特殊情况,有
{ q i , q j } = 0 { p i , p j } = 0 { p i , q j } = δ i j \begin{array}{ll} \{q_i, q_j\} &= 0 \\ \{p_i, p_j\} &= 0 \\ \{p_i, q_j\} &= \delta_{ij} \end{array} { qi,qj}{ pi,pj}{ pi,qj}=0=0=δij
在三个函数组成的泊松括号之间,存在下面的关系式
{ f , { g , h } } + { g , { h , f } } + { h , { f , g } } = 0 \{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0 { f,{ g,h}}+{ g,{ h,f}}+{ h,{ f,g}}=0
我们称之为雅可比恒等式。

泊松定理

泊松括号的一个重要性质在于,如果 f f f g g g是两个运动积分,则它们构成的泊松括号也是运动积分
{ f , g } = c o n s t \{f, g\} = const { f,g}=const
这就是泊松定理。

正则变换

下面研究变换
Q = ( p , q , t ) ,   P = ( p , q , t ) Q = (p, q, t), ~ P = (p, q,t) Q=(p,q,t), P=(p,q,t)
需要满足什么条件,才能保持运动方程的如下形式
Q ˙ = ∂ H ′ ∂ P ,   P ˙ = − ∂ H ′ ∂ Q \dot Q = \frac{\partial H'}{\partial P}, ~ \dot P = -\frac{\partial H'}{\partial Q} Q˙=PH, P˙=QH
其中 H ′ ( P , Q ) H'(P, Q) H(P,Q)是某个哈密顿函数。在这些变换中有一类特别重要的变换,称之为正则变换。
根据拉格朗日量和哈密顿量的关系,最小作用量原理可以表述为
δ ∫ ( p d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值