证明n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量

证 明 n 阶 方 阵 A 可 相 似 对 角 化 的 充 要 条 件 是 A 有 n 个 线 性 无 关 的 特 征 向 量 证 明 : 必 要 性 : 已 知 A 可 以 相 似 对 角 化 , 则 存 在 可 逆 矩 阵 P P − 1 A P = ( λ 1 λ 2 … λ n ) A P = P ( λ 1 λ 2 … λ n ) 对 P 的 每 列 进 行 分 块 , 有 P = [ x 1 ∣ x 2 ∣ … ∣ x n ] , 于 是 有 A [ x 1 ∣ x 2 ∣ … ∣ x n ] = [ x 1 ∣ x 2 ∣ … ∣ x n ] ( λ 1 λ 2 … λ n ) [ A x 1 ∣ A x 2 ∣ … ∣ A x n ] = [ λ 1 x 1 ∣ λ 2 x 2 ∣ … ∣ λ n x n ] 有 A x i = λ i x i 因 为 P 可 逆 , 所 以 x i 线 性 无 关 , 可 知 A 有 n 个 线 性 无 关 特 征 向 量 充 分 性 : 已 知 A 有 n 个 线 性 无 关 的 特 征 向 量 , A x i = λ i x i , x i 线 性 无 关 有 [ A x 1 ∣ A x 2 ∣ … ∣ A x n ] = [ λ 1 x 1 ∣ λ 2 x 2 ∣ … ∣ λ n x n ] A [ x 1 ∣ x 2 ∣ … ∣ x n ] = [ x 1 ∣ x 2 ∣ … ∣ x n ] ( λ 1 λ 2 … λ n ) 令 P = [ x 1 ∣ x 2 ∣ … ∣ x n ] A P = P ( λ 1 λ 2 … λ n ) P − 1 A P = ( λ 1 λ 2 … λ n ) \begin{aligned} & 证明n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量\\ & 证明:\\ & 必要性:已知A可以相似对角化,则存在可逆矩阵P\\ & P^{-1}AP = \begin{pmatrix} & \lambda_1 \\ & \quad & \lambda_2 \\ & \quad & \quad & \dots \\ & \quad & \quad & \quad & \lambda_n & \end{pmatrix}\\\\ & AP = P\begin{pmatrix} & \lambda_1 \\ & \quad & \lambda_2 \\ & \quad & \quad & \dots \\ & \quad & \quad & \quad & \lambda_n & \end{pmatrix}\\ & 对P的每列进行分块,有P=[x_1|x_2|\dots|x_n],于是有 \\\\ & A[x_1|x_2|\dots|x_n] = [x_1|x_2|\dots|x_n]\begin{pmatrix} & \lambda_1 \\ & \quad & \lambda_2 \\ & \quad & \quad & \dots \\ & \quad & \quad & \quad & \lambda_n & \end{pmatrix}\\ & [Ax_1|Ax_2|\dots|Ax_n] = [\lambda_1x_1|\lambda_2x_2|\dots|\lambda_nx_n]\\ & 有Ax_i = \lambda_ixi\\ & 因为P可逆,所以x_i线性无关,可知A有n个线性无关特征向量\\ \\ & 充分性:已知A有n个线性无关的特征向量,Ax_i=\lambda_ix_i,x_i线性无关\\ & 有[Ax_1|Ax_2|\dots|Ax_n] = [\lambda_1x_1|\lambda_2x_2|\dots|\lambda_nx_n]\\ & A[x_1|x_2|\dots|x_n] = [x_1|x_2|\dots|x_n]\begin{pmatrix} & \lambda_1 \\ & \quad & \lambda_2 \\ & \quad & \quad & \dots \\ & \quad & \quad & \quad & \lambda_n & \end{pmatrix} 令P=[x_1|x_2|\dots|x_n]\\\\ & AP = P\begin{pmatrix} & \lambda_1 \\ & \quad & \lambda_2 \\ & \quad & \quad & \dots \\ & \quad & \quad & \quad & \lambda_n & \end{pmatrix}\\ & P^{-1}AP = \begin{pmatrix} & \lambda_1 \\ & \quad & \lambda_2 \\ & \quad & \quad & \dots \\ & \quad & \quad & \quad & \lambda_n & \end{pmatrix} & \end{aligned} nAAn线APP1AP=λ1λ2λnAP=Pλ1λ2λnPP=[x1x2xn]A[x1x2xn]=[x1x2xn]λ1λ2λn[Ax1Ax2Axn]=[λ1x1λ2x2λnxn]Axi=λixiPxi线An线An线Axi=λixixi线[Ax1Ax2Axn]=[λ1x1λ2x2λnxn]A[x1x2xn]=[x1x2xn]λ1λ2λnP=[x1x2xn]AP=Pλ1λ2λnP1AP=λ1λ2λn

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hack Rabbit

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值