notes for "Discrete Mathematics and its Application" : Chapter one

Summary:

Ok, it’s my first time to try to complete a English essay. Whatever,everything is hard at the beginning. What I need to do is exerting all my strength. Yeah, that’s enough.

Turn back to the topic I want to record, what I have learned or got across during my study in Chapter one. First, this book is so famous that before I read it, consequently I assumed the book may be kind of incomprehensible like another famous textbook Introduction to Algorithm. However, after the study of Chapter one,I’m assured that I can do it myself. The book is quite brilliant and intelligible. Now, I am confident enough to go on my study.

Chapter one is involved with the fundaments of this subject. It seems relatively easy for a student taught in China as widely known. However, I also get quite a lot new concepts and methods I have never heard or noticed before. Furthermore, I am impressed by the magnificent structure of mathematics logic.

There are quite a lot formula to remember such like De Morgan’s Laws and other logical laws and rules of inference. What I want to point out here is that I have operated the proof by contraposition many times, but I should never notice the inside logic before! No doubt should I think more logical as a student wanted to get further in CS.

 

ComputerProjects:

Description:

Given a portion of a checkerboard, look for tilings of this checkerboard with various types of polyominoes, including dominoes, the two types of triominoes, and larger polypminoes.

Analysis:

The case of dominoes: If the checkerboard have grids of even number, we can necessarily find a tiling. If each row have grids of even number, we can filled the checkerboard with the vertical dominoes. If each column have grids of even number, we can filled thecheckerboard with the horizontal dominoes.

The case of straight triominoes: The case is similar to the case of dominoes, if the checkerboard have grids of number of three’s multiple, then we can find a proper tiling.

The case of right triominoes: This case is a little bit more complicated. In order to fill a checkerboard, we need a rectangle. With two right triominoes, we can form a 2*3 rectangle. So the checkerboard must have a side with grids of even number and the other side with grids of number of three’s multiple.

#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
using namespace std;
int main()
{
    freopen("in.txt","r",stdin);
    int row,column;
    cin>>row>>column;
    //the case of dominoes
    if(row%2==0||column%2==0)
        cout<<"We can find a tiling with dominoes."<<endl;
    else cout<<"We can't find a tiling with dominoes."<<endl;
    //the case of straight triominoes
    if(row%3==0||column%3==0)
        cout<<"We can find a tiling with straight triominoes."<<endl;
    else cout<<"We can't find a tiling with straight triominoes."<<endl;
    //the case of right triominoes
    if(row%3==0&&column%2==0||row%2==0&&column%3==0)
        cout<<"We can find a tiling with right triominoes."<<endl;
    else cout<<"We can't find a tiling with right triominoes."<<endl;
    return 0;
}

 


WritingProjects:

  For the limitation of my poor English ability and lack of vocabulary of mathematics, I just choose the first topic.

I have gone through these three paradoxes.Of course, I also read a little about their history and explanation. It’sreally interesting.

  The paradox of Epimenides the Cetan seems to be a paradox from the first sight.However, it’s not that difficult to find that it makes a basic mistake that mix up the negation of a universe quantifier.

  And Jourdain’s card paradox looks quite interesting. En, a circular reference. And I have no other idea about it.

  And the last one, the barber paradox. It’s so famous that I have heard it before.The paradox exploits the weakness of sets and led to the third crisis of mathematics. However, it also push forth mathematics. Maybe raising a brilliant paradox can be as great as a brilliant assumption or problem. Ok, I have to admit that I still have a long way to go.

 Sorry for complete this passage in such a rush without too much consideration.

 That’s all.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值