2020-12-30 activiz空间位置变换以及圆柱空间参数方程

1. vtkTransform
activiz中actor位置,除了自身的属性,比如setposition之类的之外,也可以应用vtkTransform。左乘和右乘是不一样的。
需要注意的是:setposition只是改变了物体的显示位置而不是实际位置,而Translate改变的是实际位置,如果实际位置离原点太远,会出现显示不稳定的问题,比如颤动。

vtkTransform cubetransform_dir = vtkTransform.New();// 空间变换对象
cubetransform_dir.PostMultiply();  // 设置右乘变换矩阵
cubetransform_dir.RotateX(90);  // 绕x轴旋转 单位是° 有四种旋转方式
cubetransform_dir.Translate(x, y, z);	//平移 cubeActor.SetUserTransform(cubetransform_dir); // 柱体空间变换 

2. vtkTransform在圆柱表示的应用
已知圆柱的倾角(与铅垂线的锐角),倾向(以X轴正向顺时针旋转),中心坐标,表示其位置。由于采用activiz中内置的vtkCylinderSource生成圆柱,所以生成的都是轴线沿着Y轴正向的,需要旋转。

transform_dir.RotateX(90); // 绕x轴旋转 单位是° 本行为主轴线为Y+时采用,若主轴为Z+ 不需要该旋转
transform_dir.RotateY(b.slopeRatio); //倾角
transform_dir.RotateZ(b.trend); //倾向
//x,y,z为桩中心坐标(一半桩长处)
transform_dir.Translate(x, y, z);
pileActor.SetUserTransform(transform_dir);                   

3. 圆柱空间参数方程
相对铅垂线倾斜:
斜
垂直水平面:
直
式中:x0,y0,z0为底面中心。A、B、C为轴线直线一般式
的参数。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
圆柱坐标系下的 N-S 方程是描述流体在圆柱坐标系下的运动状态的方程。它包括连续性方程、动量方程和能量方程,其中动量方程包括雷诺应力项。 下面给出圆柱坐标系下的 N-S 方程: 连续性方程: $$\frac{\partial \rho}{\partial t}+\frac{1}{r}\frac{\partial}{\partial r}(r\rho u)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0$$ 动量方程: $$\frac{\partial}{\partial t}(\rho u)+\frac{1}{r}\frac{\partial}{\partial r}(\rho u^2)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho u v)+\frac{\partial}{\partial z}(\rho u w)=-\frac{\partial p}{\partial r}+\frac{\tau_{rr}}{\rho r}-\frac{\tau_{\theta r}}{\rho r}-\frac{\tau_{zr}}{\rho}+F_r$$ $$\frac{\partial}{\partial t}(\rho v)+\frac{1}{r}\frac{\partial}{\partial r}(\rho uv)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho v^2)+\frac{\partial}{\partial z}(\rho v w)=-\frac{1}{r}\frac{\partial p}{\partial \theta}-\frac{\tau_{r\theta}}{\rho r}-\frac{\tau_{\theta \theta}}{\rho r}-\frac{\tau_{z\theta}}{\rho}+F_\theta$$ $$\frac{\partial}{\partial t}(\rho w)+\frac{1}{r}\frac{\partial}{\partial r}(\rho uw)+\frac{1}{r}\frac{\partial}{\partial \theta}(\rho vw)+\frac{\partial}{\partial z}(\rho w^2)=-\frac{\partial p}{\partial z}-\frac{\tau_{rz}}{\rho r}-\frac{\tau_{\theta z}}{\rho r}-\frac{\tau_{zz}}{\rho}+F_z$$ 其中,$\rho$ 是流体密度,$u,v,w$ 分别是流体在 $r,\theta,z$ 三个方向上的速度分量,$p$ 是流体压力,$\tau_{ij}$ 是雷诺应力张量,$F_r,F_\theta,F_z$ 是外力对流体的作用力。 雷诺应力张量是描述湍流效应的一种物理量,它表示流体中不同位置处的速度差异会产生的附加应力。在圆柱坐标系下,雷诺应力张量的各个分量可以表示为: $$\tau_{rr}=-2\mu\frac{\partial u}{\partial r}-\frac{2}{3}\mu(\frac{\partial u}{\partial r}+\frac{2}{r}u)$$ $$\tau_{\theta r}=-\mu(\frac{\partial v}{\partial r}+\frac{\partial u}{\partial \theta}-\frac{v}{r})$$ $$\tau_{zr}=-\mu(\frac{\partial w}{\partial r}+\frac{\partial u}{\partial z})$$ $$\tau_{r\theta}=-\mu(\frac{1}{r}\frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial r}-\frac{u}{r})$$ $$\tau_{\theta \theta}=-2\mu\frac{\partial v}{\partial \theta}-\frac{2}{3}\mu(\frac{\partial v}{\partial \theta}-\frac{u}{r})$$ $$\tau_{z\theta}=-\mu(\frac{\partial v}{\partial z}+\frac{1}{r}\frac{\partial w}{\partial \theta})$$ $$\tau_{rz}=-\mu(\frac{\partial w}{\partial z}+\frac{\partial u}{\partial r})$$ 其中,$\mu$ 是流体的动力粘度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值