在长文本处理中涉及数字问题模型处理的效果不佳,除了积累样本进行后续sft训练比较直接的解决方法,还能通过Prompt工程来优化;提示工程在增强相关度和紧密匹配query需求方面十分关键。在这收集了一些对自己有过帮助的文档:
1、Prompt 最佳实践:
这里面提到了CoT(Chain of Thought,CoT),遵循步骤:提供实例 -> 分解问题 -> 提供解释,是实践能减少数字相关问题出错的解决方案。
在Prompt评测中好的评估集特别重要,主要体现在多样性、高质量、规模适中。
一个典型的迭代路径是:首先完成 prompt 设计,接着基于设计好的 prompt 获取实验结果,分析 bad cases,解 bad cases,并进一步优化 prompt,通过多次的重复和迭代,直到达到一个最优效果。
2、以LangChain为实践的一种结构化提示设计方法
Prompt工程参考笔记
最新推荐文章于 2024-11-04 14:25:13 发布