Prompt工程参考笔记

在长文本处理中涉及数字问题模型处理的效果不佳,除了积累样本进行后续sft训练比较直接的解决方法,还能通过Prompt工程来优化;提示工程在增强相关度和紧密匹配query需求方面十分关键。在这收集了一些对自己有过帮助的文档:
1、Prompt 最佳实践
这里面提到了CoT(Chain of Thought,CoT),遵循步骤:提供实例 -> 分解问题 -> 提供解释,是实践能减少数字相关问题出错的解决方案。
在Prompt评测中好的评估集特别重要,主要体现在多样性、高质量、规模适中。
一个典型的迭代路径是:首先完成 prompt 设计,接着基于设计好的 prompt 获取实验结果,分析 bad cases,解 bad cases,并进一步优化 prompt,通过多次的重复和迭代,直到达到一个最优效果。
2、以LangChain为实践的一种结构化提示设计方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值