通信原理学习笔记6-1:数字解调——基础解调链路、匹配滤波器和AWGN信道最佳接收机

基础的数字解调链路

基础的解调链路由下变频、匹配滤波器、抽样、判决组成

  • 下变频将带通信号变为低通信号
  • 匹配滤波器是为了尽可能滤去噪声,保证抽样时刻的信噪比最大
  • 抽样判决:在合适时刻对接收信号抽样,并且根据门限进行判决

匹配滤波器和AWGN信道最佳接收机

发射信号经过AWGN信道,混入噪声;
接收端下变频后,我们用匹配滤波器尽量减小信道噪声的影响

  • 匹配滤波器:保证输出信号的信噪比最大化
    原理:若输入的信号为 s ( t ) s(t) s(t),那么匹配滤波器为 h ( t ) = s ( T − t ) h(t)=s(T-t) h(t)=s(Tt),输出信号在 t = T t=T t=T时刻采样,可以得到最大的信噪比(因为输出刚好就是输入信号的自相关函数 y ( t ) = ∫ − ∞ ∞ s ( τ ) h ( t − τ ) d τ = ∫ − ∞ ∞ s ( τ ) s ( T − t + τ ) d τ = R s ( T − t ) y(t)=\int_{-\infty}^{\infty} s(\tau) h(t-\tau) \mathrm{d} \tau =\int_{-\infty}^{\infty} s(\tau) s(T-t+\tau) \mathrm{d} \tau =R_{s}(T-t) y(t)=s(τ)h(tτ)dτ=s(τ)s(Tt+τ)dτ=Rs(Tt),其中假设 s ( t ) s(t) s(t)各态历经)
  • 可见,匹配滤波器的选择,取决于发送端的成形滤波器的选择
    由于要满足Nyquist准则(避免ISI),之前说过发送机的成形滤波器为升余弦滚降滤波器RC
    然而,实际中发端的成形滤波器和收端的匹配滤波器不能同时使用RC,因为一个RC能够满足Nyquist准则,两个叠加反而不行

由此,综合考虑无ISI(升余弦滚降滤器)和信噪比最大化(匹配滤波器),得到AWGN信道的最佳接收机:发端成形滤波器使用RRC,而收端匹配滤波器也使用RRC

  • 平方根升余弦滤波器RCC的时域响应,就是升余弦滤波器RC的平方根
  • ①收发端两个RRC合起来等效于一个RC滤波器,满足奈奎斯特准则,从而无ISI
  • ②发端使用RC滤波器,收端也使用RC滤波器作为匹配滤波器,从而保证信噪比最大
    其中,若发射端成形滤波器(RRC)记为 g ( t ) g(t) g(t),那么接收端的匹配滤波器为 g ( T − t ) g(T-t) g(Tt),采样判决时刻为 T T T

采样判决时刻的选择:

理想情况,接收端可以直接使用与发射端相同的RRC滤波器 g ( t ) g(t) g(t),这应该理解为 T = 0 T=0 T=0的匹配滤波器 g ( T − t ) g(T-t) g(Tt)

  • 实际不能直接用 g ( t ) g(t) g(t)作为匹配滤波器,因为接收端 g ( t ) g(t) g(t)是非因果的,因此实际的匹配滤波器仍然需要一个延时 T T T,即 g ( T − t ) g(T-t) g(Tt),同时采样时刻对应延时 T T T
  • 就是说对于任意位置 n n n上的一个符号 I n I_n In采样时刻 T + n T s T+nT_s T+nTs(在各个符号周期,延迟 T T T时刻采样)

系统模型

在这里插入图片描述

ps. 实际中的解调链路还需要符号同步模块,用于对准采样判决时刻,在后续文章会提到

整体建模如下(形滤波器使用RRC,记为 g ( t ) g(t) g(t)):

  • 发射端基带信号 s ( t ) = ∑ n = − ∞ ∞ I n g ( t − n T s ) s(t)=\sum_{n=-\infty}^{\infty} I_{n} g\left(t-n T_{s}\right) s(t)=n=Ing(tnTs)
    其中,在PAM调制下 I n I_{n} In为实数,在QAM/PSK调制下 I n I_{n} In为复数(认为是两路实信号,下面只考虑实信号情况,复信号情况可做类似处理)
  • 经过AWGN信道和下变频,接收端基带信号 r ( t ) = s ( t ) + n ( t ) r(t)=s(t)+n(t) r(t)=s(t)+n(t)

由于上面说过,匹配滤波器也使用RRC,两个RRC合并可以实现无ISI,因此下面无需考虑多个符号,只考虑一个符号的情况,即下面只考虑任意位置 n n n上的一个符号 I n I_n In

  • 在发射端 s ( t ) = I n g ( t − n T s ) s(t)=I_ng(t-nT_s) s(t)=Ing(tnTs)

  • 经过AWGN信道,叠加噪声 r ( t ) = I n g ( t − n T s ) + n ( t ) r(t)=I_ng(t-nT_s)+n(t) r(t)=Ing(tnTs)+n(t)

  • 经过匹配滤波器 g ( T − t ) g(T-t) g(Tt)(如前面采样时刻部分所述,实际的匹配滤波器仍然需要一个延时 T T T
    根据 x ( t ) ∗ y ( t ) = ∫ − ∞ ∞ x ( τ ) y ( t − τ ) d τ x(t)*y(t)=\int_{-\infty}^{\infty}x(\tau)y(t-\tau)d\tau x(t)y(t)=x(τ)y(tτ)dτ
    y ( t ) = g ( T − t ) 时 y(t)=g(T-t)时 y(t)=g(Tt) x ( t ) ∗ y ( t ) = ∫ − ∞ ∞ x ( τ ) g [ T − ( t − τ ) ] d τ x(t)*y(t)=\int_{-\infty}^{\infty}x(\tau)g[T-(t-\tau)]d\tau x(t)y(t)=x(τ)g[T(tτ)]dτ,则有
    y ( t ) = r ( t ) ∗ g ( T − t ) = I n ∫ − ∞ ∞ g ( τ − n T s ) g [ T − ( t − τ ) ] d τ + ∫ − ∞ ∞ n ( τ ) g [ T − ( t − τ ) ] d τ y(t)=r(t)*g(T-t)=I_{n} \int_{-\infty}^{\infty} g(\tau-nT_s)g[T-(t-\tau)] \mathrm{d} \tau+\int_{-\infty}^{\infty} n(\tau) g[T-(t-\tau)] \mathrm{d} \tau y(t)=r(t)g(Tt)=Ing(τnTs)g[T(tτ)]dτ+n(τ)g[T(tτ)]dτ

  • 采样时刻:对于任意位置 n n n上的一个符号 I n I_n In采样时刻 T + n T s T+nT_s T+nTs

  • 采样后的结果
    y ( T + n T s ) = I n ∫ − ∞ ∞ g 2 ( τ − n T s ) d τ + ∫ − ∞ ∞ n ( τ ) g ( τ − n T s ) d τ y(T+nT_s)=I_{n} \int_{-\infty}^{\infty} g^{2}(\tau-nT_s) \mathrm{d} \tau+\int_{-\infty}^{\infty} n(\tau) g(\tau-nT_s) \mathrm{d} \tau y(T+nTs)=Ing2(τnTs)dτ+n(τ)g(τnTs)dτ
    忽略其中的系数 E g = ∫ − ∞ ∞ g 2 ( τ − n T s ) d τ \mathcal{E}_{g}= \int_{-\infty}^{\infty} g^{2}(\tau-nT_s) \mathrm{d} \tau Eg=g2(τnTs)dτ,即上式除以 E g \mathcal{E}_{g} Eg
    则采样后得到的一个符号 Y n Y_n Yn可以简记为: Y n = I n + n n ,其中 n n = ∫ − ∞ ∞ n ( τ ) g ( τ − n T s ) d τ E g Y_{n}=I_{n}+n_{n},其中n_n=\frac{\int_{-\infty}^{\infty} n(\tau) g(\tau-nT_s) \mathrm{d} \tau}{\mathcal{E}_{g}} Yn=In+nn,其中nn=Egn(τ)g(τnTs)dτ

注意,上面其实还默认忽略了匹配滤波器 k g ( T − t ) kg(T-t) kg(Tt)的增益系数 k k k,我们忽略这些无关紧要的系数,因为后续的信道估计可以估计出整个信道的总体等效增益,这些系数的差别也隐含在信道增益中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值