【通信原理笔记】【二】随机信号分析——2.6 匹配滤波器与最佳采样时刻


前言

终于到第二章的最后一节了,上节内容介绍了高斯白噪声,这是一种广泛存在叠加在信号上的干扰噪声,会影响信号的接受与解码。因此本节就要研究如果使得接收端采样的信号功率与噪声功率的比值尽可能大,也就是信噪比最大。


一、信噪比

现在我们来考虑一个简单的通信模型,一个确定信号 x ( t ) x(t) x(t)叠加高斯白噪声,再经过一个冲激响应为 h ( t ) h(t) h(t)的滤波器得到输出信号 y ( t ) y(t) y(t)与输出窄带高斯噪声 n ( t ) n(t) n(t),则我们有输出信号的信噪比:

γ = y 2 ( t ) E n 2 ( t ) \gamma=\frac{y^2(t)}{En^2(t)} γ=En2(t)y2(t)

信噪比越大,噪声干扰对信号解码带来的影响也就越小,因此我们需要最大化接受信号的信噪比。通过上式可以发现,不同的滤波器,不同的采样时刻都会影响信噪比。那么我们能不能找到一种最佳的滤波器设计,并且在最佳时刻采样,使得信噪比最大化呢?这当然是可以的。这个最大信噪比的滤波器就叫是匹配滤波器,下面我们来讨论如何找到这个匹配滤波器。

二、匹配滤波器

让我们进一步分析一下我们的问题,输出的窄带噪声功率由上一节的结论得 E n 2 ( t ) = E h N 0 / 2 En^2(t)=E_hN_0/2 En2(t)=EhN0/2,至于输出信号的功率我们先把 y ( t ) y(t) y(t)的表达式写出来

y ( t ) = ∫ x ( u ) h ( t − u ) d u y(t)=\int x(u)h(t-u)du y(t)=x(u)h(tu)du

将上述结果代入信噪比公式得

γ = 2 ( ∫ x ( u ) h ( t − u ) d u ) 2 E h N 0 \gamma=\frac{2(\int x(u)h(t-u)du)^2}{E_hN_0} γ=EhN02(x(u)h(tu)du)2
= 2 N 0 [ ∫ x ( u ) h ( t − u ) E h d u ] 2 =\frac{2}{N_0}\left[\int x(u)\frac{h(t-u)}{\sqrt{E_h}}du\right]^2 =N02[x(u)Eh h(tu)du]2
由柯西-许瓦兹不等式有:
⩽ 2 N 0 ∫ ∣ x ( u ) ∣ 2 d u ∫ ∣ h ( t − u ) E h ∣ 2 d u \leqslant \frac{2}{N_0}\int |x(u)|^2du\int|\frac{h(t-u)}{\sqrt{E_h}}|^2du N02x(u)2duEh h(tu)2du
= 2 N 0 ∫ ∣ x ( u ) ∣ 2 d u =\frac{2}{N_0}\int|x(u)|^2du =N02x(u)2du

根据柯西-许瓦兹不等式取等的条件,我们有最佳滤波器——匹配滤波器的表达式为

h ( t − u ) = k x ( u ) h(t-u)=kx(u) h(tu)=kx(u)
h ( u ) = k x ( t − u ) h(u)=kx(t-u) h(u)=kx(tu),进行一下变量替换,有
h ( t ) = k x ( t 0 − t ) h(t)=kx(t_0-t) h(t)=kx(t0t)

观察匹配滤波器的表达式可以发现,其波形就是将输入信号做镜像对称再加上时延,其能量(即k的值变化时)并不影响接收信号的信噪比。顺便也利用傅里叶变换的共轭特性与时移特性,给出匹配滤波器的传递函数:

H ( f ) = k S ∗ ( f ) e − 2 π f t 0 H(f)=kS^*(f)e^{-2\pi ft_0} H(f)=kS(f)e2πft0

三、最佳采样时刻

现在,我们已经有了匹配滤波器,我们再写一下信噪比的公式:

γ = 2 [ ∫ x ( u ) k x ( t 0 − t + u ) d u ] 2 E h N 0 \gamma = \frac{2\left[\int x(u)kx(t_0-t+u)du\right]^2}{E_hN_0} γ=EhN02[x(u)kx(t0t+u)du]2

观察上式中的分子,易知当 t = t 0 t=t_0 t=t0时,分子取到最大值 E x E h E_xE_h ExEh,达到最大信噪比 2 E x N 0 \frac{2E_x}{N_0} N02Ex。因此最佳采样时刻就是 t = t 0 t=t_0 t=t0


总结

在这篇中介绍了第二章最后的一节内容,匹配滤波器在实际系统中往往是开根号拆分成两部分放在收发两端,达到匹配滤波的目的,这部分内容会在后面的章节做详细介绍。总的来说,第二章的内容涉及了比较多的偏数学的知识,不过这些都是后续内容会用到的基础知识,虽然现在看起来还有点抽象,但是越到后面也就越清楚它们的作用了。

下一章内容是信号的模拟调制,弄清楚模拟调制的原理后,再往后理解数字调制的内容就水到渠成了。

### 回答1: 匹配滤波器是一种常用的信号处理方法,用于检测信号中是否存在特定的模式或特征。它的工作原理是通过与输入信号进行相关运算,来寻找与预定义模板最相似的部分。 在匹配滤波器中,首先需要定义一个理想模板信号,该信号与我们想要检测或提取的目标信号具有相似的形状或特征。然后,将输入信号与该模板进行相关运算,得到一个相关输出信号。 在Matlab中,可以使用内置函数来实现匹配滤波器的仿真。首先,需要定义理想模板信号,可以根据实际需求选择不同的形状,比如矩形、正弦波等。 然后,将输入信号与理想模板信号进行相关运算。可以使用Matlab中的相关函数(corr函数)来计算输入信号与模板信号之间的相关性。通过相关性的计算,可以得到一个相关输出信号。 最后,可以通过设置合适的阈值来判断是否存在目标信号。相关输出信号中的峰值表示输入信号与模板的匹配程度,如果峰值超过设定的阈值,则可以认为输入信号包含了目标信号。 通过匹配滤波器的处理,可以提取出目标信号并进行后续的处理和分析,比如目标检测、目标跟踪等。 总之,匹配滤波器是一种在信号处理中常用的方法,可以用于检测信号中的特定模式或特征。在Matlab中,可以使用相关函数来实现匹配滤波器的仿真,并通过设定阈值来判断目标信号的存在与否。 ### 回答2: 匹配滤波器是一种常用的信号处理方法,用于识别和提取特定信号。在随机信号处理中,匹配滤波器可以有效地检测或提取目标信号匹配滤波器的原理是将目标信号与输入信号进行卷积运算,得到的输出信号可以用来识别目标信号的存在或提取目标信号的特征。匹配滤波器的输出信号的峰值表示了目标信号与输入信号的相似度,可以用来判断目标信号是否存在或提取目标信号的相关信息。 在Matlab中,可以使用Matlab的信号处理工具箱来实现匹配滤波器。首先,需要定义目标信号和输入信号,并将它们转换为时域或频域表示。然后,利用Matlab提供的函数,如conv函数来进行卷积运算。最后,可以通过观察输出信号的峰值来进行目标信号的识别或特征提取。 在使用Matlab进行匹配滤波器的仿真时,需要注意选择合适的信号表示方法和适当的参数设置。对于时域信号,可以使用时域卷积进行仿真;对于频域信号,可以使用频域卷积进行仿真。同时,还需要设置信号采样率和信号长度等参数。 总之,匹配滤波器是一种广泛应用于信号处理中的方法,在随机信号处理中可以用于目标信号的识别和特征提取。在Matlab中可以方便地进行匹配滤波器的仿真,通过观察输出信号的峰值可以对目标信号进行判断和分析。 ### 回答3: 匹配滤波器是一种常用于随机信号处理的滤波器,用于检测信号中特定形状或特定频率的成分。 在信号处理中,匹配滤波器被广泛应用于信号的检测与识别任务中。其工作原理是通过与输入信号进行卷积操作,以提取信号中的特定模式。匹配滤波器通常由输入信号和一个参考信号(也称为模板)组成,其中参考信号是期望匹配的信号形状或频率。 具体而言,在使用匹配滤波器进行信号处理时,首先需要选择适当的参考信号。然后,将输入信号与参考信号进行卷积操作,得到匹配滤波器的输出信号。通过观察输出信号的幅度或能量,可以判断输入信号中是否存在与参考信号匹配的成分。 在Matlab中,可以利用信号处理工具箱来进行匹配滤波器的仿真。具体步骤为:首先,导入或生成待处理的输入信号和参考信号,可以使用Matlab中的信号生成函数或读取已有的信号文件。然后,利用conv函数对输入信号和参考信号进行卷积操作。最后,观察输出信号的幅度或能量来判断匹配的程度。 值得注意的是,匹配滤波器的性能与参考信号的选择密切相关。因此,在实际应用中,需要根据具体的场景和需求来选择合适的参考信号,以达到最佳的匹配效果。 总结起来,匹配滤波器是一种常用的信号处理方法,可以用于检测信号中特定形状或特定频率的成分。在Matlab中,可以通过信号处理工具箱进行匹配滤波器的仿真,具体步骤为选择参考信号、进行卷积操作和观察输出信号的幅度或能量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值