前言
终于到第二章的最后一节了,上节内容介绍了高斯白噪声,这是一种广泛存在叠加在信号上的干扰噪声,会影响信号的接受与解码。因此本节就要研究如果使得接收端采样的信号功率与噪声功率的比值尽可能大,也就是信噪比最大。
一、信噪比
现在我们来考虑一个简单的通信模型,一个确定信号 x ( t ) x(t) x(t)叠加高斯白噪声,再经过一个冲激响应为 h ( t ) h(t) h(t)的滤波器得到输出信号 y ( t ) y(t) y(t)与输出窄带高斯噪声 n ( t ) n(t) n(t),则我们有输出信号的信噪比:
γ = y 2 ( t ) E n 2 ( t ) \gamma=\frac{y^2(t)}{En^2(t)} γ=En2(t)y2(t)
信噪比越大,噪声干扰对信号解码带来的影响也就越小,因此我们需要最大化接受信号的信噪比。通过上式可以发现,不同的滤波器,不同的采样时刻都会影响信噪比。那么我们能不能找到一种最佳的滤波器设计,并且在最佳时刻采样,使得信噪比最大化呢?这当然是可以的。这个最大信噪比的滤波器就叫是匹配滤波器,下面我们来讨论如何找到这个匹配滤波器。
二、匹配滤波器
让我们进一步分析一下我们的问题,输出的窄带噪声功率由上一节的结论得 E n 2 ( t ) = E h N 0 / 2 En^2(t)=E_hN_0/2 En2(t)=EhN0/2,至于输出信号的功率我们先把 y ( t ) y(t) y(t)的表达式写出来
y ( t ) = ∫ x ( u ) h ( t − u ) d u y(t)=\int x(u)h(t-u)du y(t)=∫x(u)h(t−u)du
将上述结果代入信噪比公式得
γ = 2 ( ∫ x ( u ) h ( t − u ) d u ) 2 E h N 0 \gamma=\frac{2(\int x(u)h(t-u)du)^2}{E_hN_0} γ=EhN02(∫x(u)h(t−u)du)2
= 2 N 0 [ ∫ x ( u ) h ( t − u ) E h d u ] 2 =\frac{2}{N_0}\left[\int x(u)\frac{h(t-u)}{\sqrt{E_h}}du\right]^2 =N02[∫x(u)Ehh(t−u)du]2
由柯西-许瓦兹不等式有:
⩽ 2 N 0 ∫ ∣ x ( u ) ∣ 2 d u ∫ ∣ h ( t − u ) E h ∣ 2 d u \leqslant \frac{2}{N_0}\int |x(u)|^2du\int|\frac{h(t-u)}{\sqrt{E_h}}|^2du ⩽N02∫∣x(u)∣2du∫∣Ehh(t−u)∣2du
= 2 N 0 ∫ ∣ x ( u ) ∣ 2 d u =\frac{2}{N_0}\int|x(u)|^2du =N02∫∣x(u)∣2du
根据柯西-许瓦兹不等式取等的条件,我们有最佳滤波器——匹配滤波器的表达式为
h ( t − u ) = k x ( u ) h(t-u)=kx(u) h(t−u)=kx(u)
h ( u ) = k x ( t − u ) h(u)=kx(t-u) h(u)=kx(t−u),进行一下变量替换,有
h ( t ) = k x ( t 0 − t ) h(t)=kx(t_0-t) h(t)=kx(t0−t)
观察匹配滤波器的表达式可以发现,其波形就是将输入信号做镜像对称再加上时延,其能量(即k的值变化时)并不影响接收信号的信噪比。顺便也利用傅里叶变换的共轭特性与时移特性,给出匹配滤波器的传递函数:
H ( f ) = k S ∗ ( f ) e − 2 π f t 0 H(f)=kS^*(f)e^{-2\pi ft_0} H(f)=kS∗(f)e−2πft0
三、最佳采样时刻
现在,我们已经有了匹配滤波器,我们再写一下信噪比的公式:
γ = 2 [ ∫ x ( u ) k x ( t 0 − t + u ) d u ] 2 E h N 0 \gamma = \frac{2\left[\int x(u)kx(t_0-t+u)du\right]^2}{E_hN_0} γ=EhN02[∫x(u)kx(t0−t+u)du]2
观察上式中的分子,易知当 t = t 0 t=t_0 t=t0时,分子取到最大值 E x E h E_xE_h ExEh,达到最大信噪比 2 E x N 0 \frac{2E_x}{N_0} N02Ex。因此最佳采样时刻就是 t = t 0 t=t_0 t=t0
总结
在这篇中介绍了第二章最后的一节内容,匹配滤波器在实际系统中往往是开根号拆分成两部分放在收发两端,达到匹配滤波的目的,这部分内容会在后面的章节做详细介绍。总的来说,第二章的内容涉及了比较多的偏数学的知识,不过这些都是后续内容会用到的基础知识,虽然现在看起来还有点抽象,但是越到后面也就越清楚它们的作用了。
下一章内容是信号的模拟调制,弄清楚模拟调制的原理后,再往后理解数字调制的内容就水到渠成了。