插值题目选做

n次多项式空间是有限维线性空间

{ x 0 , ⋯   , x n } \{x_0,\cdots,x_n\} { x0,,xn}互异, k ∈ { 0 , ⋯   , n } k \in \{0,\cdots,n\} k{ 0,,n}, 求证

  1. ∑ i = 0 n x i k l i ( x ) ≡ x k , k ∈ { 0 , ⋯   , n } \sum\limits_{i=0}^{n} x_i^k l_i(x) \equiv x^k, \quad k \in \{0,\cdots,n\} i=0nxikli(x)xk,k{ 0,,n}
  2. ∑ i = 0 n ( x i − x ) k l i ( x ) ≡ 0 , k ∈ { 1 , ⋯   , n } \sum\limits_{i=0}^{n} (x_i-x)^k l_i(x) \equiv 0, \quad k \in \{1,\cdots,n\} i=0n(xix)kli(x)0,k{ 1,,n}

1.

x k x^k xk是一个不超过 n n n次的多项式.

大前提: 给定 x k x^k xk上的 n + 1 n+1 n+1个相异的点进行插值, 由插值的唯一性可知插值多项式恒等于 x k x^k xk.

小前提: 给定 x k x^k xk上的 n + 1 n+1 n+1个相异的点( x i ( i ∈ { 0 , ⋯   , n } ) x_i(i \in \{0,\cdots,n\}) xi(i{ 0,,n}))进行(Lagrange)插值, ∑ i = 0 n x i k l i ( x ) \sum\limits_{i=0}^{n} x_i^k l_i(x) i=0nxikli(x)是插值多项式.

结论: ∑ i = 0 n x i k l i ( x ) \sum\limits_{i=0}^{n} x_i^k l_i(x) i=0nxikli(x)恒等于 x k x^k xk.

2.

k ∈ { 0 , ⋯   , n } k \in \{0,\cdots,n\} k{ 0,,n}, ∑ i = 0 n ( x i − t ) k l i ( x ) ≡ ( x − t ) k \sum\limits_{i=0}^{n} (x_i-t)^k l_i(x) \equiv (x-t)^k i=0n(xit)kli(x)(xt)k.
t = x t = x t=x, ∑ i = 0 n ( x i − x ) k l i ( x ) ≡ ( x − x ) k ≡ 0 \sum\limits_{i=0}^{n} (x_i-x)^k l_i(x) \equiv (x-x)^k \equiv 0 i=0n(xix)kli(x)(xx)k0.

插值余项

◉ 给出分段两点三次Hermite插值误差限的理论分析.

2 n + 1 2n+1 2n+1次插值余项

a = x 0 < ⋯ < x n = b a=x_0<\cdots<x_n=b a=x0<<xn=b
π ^ ( x ) = ∏ i = 0 n ( x − x i ) 2 \hat\pi(x) = \prod\limits_{i=0}^{n}(x-x_{i})^2 π^(x)=i=0n(xxi)2

R 2 n + 1 ( x ) = f ( x ) − H 2 n + 1 ( x ) R_{2n+1}(x) = f(x) - H_{2n+1}(x) R2n+1(x)=f(x)H2n+1(x)
K ( x ) = R 2 n + 1 ( x ) π ^ ( x ) K(x) = \frac{R_{2n+1}(x)}{\hat\pi(x)} K(x)=π^(x)R2n+1(x)
ϕ ( t ) = R 2 n + 1 ( t ) − K ( x ) π ^ ( t ) \phi(t) = R_{2n+1}(t) - K(x)\hat\pi(t) ϕ(t)=R2n+1(t)K(x)π^(t)

注意到 ϕ ( t ) \phi(t) ϕ(t) n + 2 n+2 n+2个零点 { x 0 , ⋯   , x n , x } \{x_0,\cdots,x_n,x\} { x0,,xn,x}, ϕ ′ ( t ) \phi'(t) ϕ(t)也有 n + 1 n+1 n+1个零点 { x 0 , ⋯   , x n } \{x_0,\cdots,x_n\} { x0,,xn}, 所以 ϕ ( t ) \phi(t) ϕ(t) 2 n + 3 2n+3 2n+3个根( n + 1 n+1 n+1个二重根 { x 0 , ⋯   , x n } \{x_0,\cdots,x_n\} { x0,,xn}, 1 1 1个一重根 { x } \{x\} { x}). 迭用Rolle定理得到 ϕ ( 2 n + 2 ) ( ξ ) = 0 \phi^{(2n+2)}(\xi)=0 ϕ(2n+2)(ξ)=0(其中 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)).

R 2 n + 1 ( 2 n + 2 ) ( ξ ) = f ( 2 n + 2 ) ( ξ ) R_{2n+1}^{(2n+2)}(\xi) = f^{(2n+2)}(\xi) R2n+1(2n+2)(ξ)=f(2n+2)(ξ)
π ^ ( 2 n + 2 ) ( ξ ) = ( 2 n + 2 ) ! \hat\pi^{(2n+2)}(\xi) = (2n+2)! π^(2n+2)(ξ)=(2n+2)!
ϕ ( 2 n + 2 ) ( ξ ) = f ( 2 n + 2 ) ( ξ ) − K ( x ) ( 2 n + 2 ) ! = 0 \phi^{(2n+2)}(\xi) = f^{(2n+2)}(\xi) - K(x)(2n+2)! = 0 ϕ(2n+2)(ξ)=f(2n+2)(ξ)K(x)(2n+2)!=0
K ( x ) = R 2 n + 1 ( x ) π ^ ( x ) = f ( 2 n + 2 ) ( ξ ) ( 2 n + 2 ) ! K(x) = \frac{R_{2n+1}(x)}{\hat\pi(x)} = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} K(x)=π^(x)R2n+1(x)=(2n+2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值