插值题目选做

这篇博客探讨了n次多项式空间的性质,重点在于插值余项的理论,特别是2n+1次和3次插值的余项表达。文章详细解释了Lagrange插值和Hermite插值,以及分段三次Hermite插值的误差限。还讨论了闭区间上连续函数的连续模和分段三次Hermite插值的误差限,指出实际应用中连续模的可刻画性具有重要意义。
摘要由CSDN通过智能技术生成

n次多项式空间是有限维线性空间

{ x 0 , ⋯   , x n } \{x_0,\cdots,x_n\} { x0,,xn}互异, k ∈ { 0 , ⋯   , n } k \in \{0,\cdots,n\} k{ 0,,n}, 求证

  1. ∑ i = 0 n x i k l i ( x ) ≡ x k , k ∈ { 0 , ⋯   , n } \sum\limits_{i=0}^{n} x_i^k l_i(x) \equiv x^k, \quad k \in \{0,\cdots,n\} i=0nxikli(x)xk,k{ 0,,n}
  2. ∑ i = 0 n ( x i − x ) k l i ( x ) ≡ 0 , k ∈ { 1 , ⋯   , n } \sum\limits_{i=0}^{n} (x_i-x)^k l_i(x) \equiv 0, \quad k \in \{1,\cdots,n\} i=0n(xix)kli(x)0,k{ 1,,n}

1.

x k x^k xk是一个不超过 n n n次的多项式.

大前提: 给定 x k x^k xk上的 n + 1 n+1 n+1个相异的点进行插值, 由插值的唯一性可知插值多项式恒等于 x k x^k xk.

小前提: 给定 x k x^k xk上的 n + 1 n+1 n+1个相异的点( x i ( i ∈ { 0 , ⋯   , n } ) x_i(i \in \{0,\cdots,n\}) xi(i{ 0,,n}))进行(Lagrange)插值, ∑ i = 0 n x i k l i ( x ) \sum\limits_{i=0}^{n} x_i^k l_i(x) i=0nxikli(x)是插值多项式.

结论: ∑ i = 0 n x i k l i ( x ) \sum\limits_{i=0}^{n} x_i^k l_i(x) i=0nxikli(x)恒等于 x k x^k xk.

2.

k ∈ { 0 , ⋯   , n } k \in \{0,\cdots,n\} k{ 0,,n}, ∑ i = 0 n ( x i − t ) k l i ( x ) ≡ ( x − t ) k \sum\limits_{i=0}^{n} (x_i-t)^k l_i(x) \equiv (x-t)^k i=0n(xit)kli(x)(xt)k.
t = x t = x t=x, ∑ i = 0 n ( x i − x ) k l i ( x ) ≡ ( x − x ) k ≡ 0 \sum\limits_{i=0}^{n} (x_i-x)^k l_i(x) \equiv (x-x)^k \equiv 0 i=0n(xix)kli(x)(xx)k0.

插值余项

◉ 给出分段两点三次Hermite插值误差限的理论分析.

2 n + 1 2n+1 2n+1次插值余项

a = x 0 < ⋯ < x n = b a=x_0<\cdots<x_n=b a=x0<<xn=b
π ^ ( x ) = ∏ i = 0 n ( x − x i ) 2 \hat\pi(x) = \prod\limits_{i=0}^{n}(x-x_{i})^2 π^(x)=i=0n(xxi)2

R 2 n + 1 ( x ) = f ( x ) − H 2 n + 1 ( x ) R_{2n+1}(x) = f(x) - H_{2n+1}(x) R2n+1(x)=f(x)H2n+1(x)
K ( x ) = R 2 n + 1 ( x ) π ^ ( x ) K(x) = \frac{R_{2n+1}(x)}{\hat\pi(x)} K(x)=π^(x)R2n+1(x)
ϕ ( t ) = R 2 n + 1 ( t ) − K ( x ) π ^ ( t ) \phi(t) = R_{2n+1}(t) - K(x)\hat\pi(t) ϕ(t)=R2n+1(t)K(x)π^(t)

注意到 ϕ ( t ) \phi(t) ϕ(t) n + 2 n+2 n+2个零点 { x 0 , ⋯   , x n , x } \{x_0,\cdots,x_n,x\} { x0,,xn,x}, ϕ ′ ( t ) \phi'(t) ϕ(t)也有 n + 1 n+1 n+1个零点 { x 0 , ⋯   , x n } \{x_0,\cdots,x_n\} { x0,,xn}, 所以 ϕ ( t ) \phi(t) ϕ(t) 2 n + 3 2n+3 2n+3个根( n + 1 n+1 n+1个二重根 { x 0 , ⋯   , x n } \{x_0,\cdots,x_n\} { x0,,xn}, 1 1 1个一重根 { x } \{x\} { x}). 迭用Rolle定理得到 ϕ ( 2 n + 2 ) ( ξ ) = 0 \phi^{(2n+2)}(\xi)=0 ϕ(2n+2)(ξ)=0(其中 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b)).

R 2 n + 1 ( 2 n + 2 ) ( ξ ) = f ( 2 n + 2 ) ( ξ ) R_{2n+1}^{(2n+2)}(\xi) = f^{(2n+2)}(\xi) R2n+1(2n+2)(ξ)=f(2n+2)(ξ)
π ^ ( 2 n + 2 ) ( ξ ) = ( 2 n + 2 ) ! \hat\pi^{(2n+2)}(\xi) = (2n+2)! π^(2n+2)(ξ)=(2n+2)!
ϕ ( 2 n + 2 ) ( ξ ) = f ( 2 n + 2 ) ( ξ ) − K ( x ) ( 2 n + 2 ) ! = 0 \phi^{(2n+2)}(\xi) = f^{(2n+2)}(\xi) - K(x)(2n+2)! = 0 ϕ(2n+2)(ξ)=f(2n+2)(ξ)K(x)(2n+2)!=0
K ( x ) = R 2 n + 1 ( x ) π ^ ( x ) = f ( 2 n + 2 ) ( ξ ) ( 2 n + 2 ) ! K(x) = \frac{R_{2n+1}(x)}{\hat\pi(x)} = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} K(x)=π^(x)R2n+1(x)=(2n+2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值