矩阵 秩 相关证明

本文尽量使用初等方法. (如果承认奇异值分解, 再做矩阵的投影分析, 就不需要如此的繁复了.)

引理1 线性代数基本定理

形式化表述

  • 有限维向量空间 V 和 W
  • 线性映射 F : V → W
  • 像 im(F) = {F(v) | v∈V} ⊆ W
  • 核 ker(F) = {v∈V | F(v)=0} ⊆ V
  • dim[im(F)] + dim[ker(F)] = dim[V]

证明

  1. 假设 dim[ker(F)]=s, 则 ker(F) 有一组基 {α1, …, αs}.
  2. 将上述基扩展至 V 的基 {α1, …, αs, β1, …, βt}.
  3. s + t = dim[V], 即, ∀v∈V, ∃(a1, …, as, b1, …, bt), v = a1α1 + … + asαs + b1β1 + … + btβt.
  4. v = a1α1 + … + asαs + b1β1 + … + btβt 张成空间 V, 则 F(v) = b1F(β1) + … + btF(βt) 张成空间 im(F).
  5. 由 {α1, …, αs, β1, …, βt} 线性无关, 知 {F(β1), …, F(βt)} 线性无关.
  6. {F(β1), …, F(βt)} 是 im(F) 的一组基, 即 dim[ker(F)]=t.

注 (第 5 步的具体证明)

  • 如果 (b1, …, bt) ≠ (c1, …, ct), 但是 b1F(β1) + … + btF(βt) = c1F(β1) + … + ctF(βt)
  • 那么 F( (b1-c1)β1 + … + (bt-ct)βt ) = 0
  • 进而 (b1-c1)β1 + … + (bt-ct)βt = d1α1 + … + dsαs
  • 由 {α1, …, αs, β1, …, βt} 线性无关 知 (b1-c1) = … = (bt-ct) = d1 = … = ds = 0
对于矩阵 X ∈ ℝ m×n, X : ℝ n → ℝ m, X(v) = X·v, 认为 X T : ℝ m → ℝ n, X T(v) = X T·w = (w T·X) T.
像 im(X) = {X·v | v∈ℝ n} ⊆ ℝ m, 核 ker(X) = {v∈ℝ n | X·v=0} ⊆ ℝ n.
像 im(X T) = {X T·w | w∈ℝ m} ⊆ ℝ n, 核 ker(X T) = {w∈ℝ m | X T·w=0} ⊆ ℝ m.
列秩 col_rank[X] = dim[im(X)] = n - dim[ker(X)].
行秩 row_rank[X] = dim[im(X T)] = m - dim[ker(X T)].

引理2.1 初等变换不改变矩阵的行秩和列秩. (初等变换矩阵, 行初等变换⇔左侧乘初等变换矩阵, 列初等变换⇔右侧乘初等变换矩阵)
引理2.2 通过初等变换可以实现高斯(若尔当)消元.

证明2.1(行初等变换)

  • 一行乘以非零常数, 不改变行秩, 不改变列秩.
  • 两行相互调换位置, 不改变行秩, 不改变列秩.
  • 一行加上另一行的常数倍, 不改变行秩, 不改变列秩.

证明2.1(列初等变换)

  • 一列乘以非零常数, 不改变列秩, 不改变行秩.
  • 两列相互调换位置, 不改变列秩, 不改变行秩.
  • 一列加上另一列的常数倍, 不改变列秩, 不改变行秩.


上述初等命题证明不能用到高等数学工具, 非常繁琐, 仅给出以下框架.

  • 证明 X 变换成 X’ 后不改变秩, 即证明 rank(X) = rank(X’), 即证明 rank(X) ⩽ rank(X’) 且 rank(X) ⩾ rank(X’).
  • 证明 rank(X) ⩽ rank(X’) 即证明 “若{x1,…,xk}线性无关, 则{x’1,…,x’k}线性无关”, 即证明 “若‘λ1x1+…+λkxk=0 当且仅当 λ1=…=λk=0’, 则‘λ1x’1+…+λkx’k=0 当且仅当 λ1=…=λk=0’”.

证明2.2

  • 首先, 仅通过行初等变化转化成行阶梯矩阵; 然后, 仅通过列初等变换转化成列阶梯矩阵; 最终, 每列/每行至多有一个元素不为零.

奇异值分解天然的能够证明线性代数基本定理, 核心思想与初等变换一样, 是左乘非奇异方形矩阵右乘非奇异方形矩阵得到对角矩阵, (实际上, 阶梯矩阵再做初等变换就能得到对角矩阵).

以下假设 X , Z ∈ R m × n , Y ∈ R n × l X,Z \in \mathbb{R}^{m \times n}, Y \in \mathbb{R}^{n \times l} X,ZRm×n,YRn×l.

命题 a c o l _ r a n k ( X ) = c o l _ r a n k ( X T ) {\rm col\_rank}(X) = {\rm col\_rank}(X^T) col_rank(X)=col_rank(XT)
逻辑关系: a ⇔ a’ (a 与 a’ 等价)

  • 命题 a’ c o l _ r a n k ( X ) = r o w _ r a n k ( X ) {\rm col\_rank}(X) = {\rm row\_rank}(X) col_rank(X)=row_rank(X)
    由引理2, 任意矩阵, 经过高斯(若尔当)消元, 最终, 每列/每行至多有一个元素不为零. 由于初等变换不改变矩阵的行秩和列秩, 所以矩阵的行秩与列秩相等, 等于最终不为零元素的个数.

命题 b c o l _ r a n k ( X ) ⩽ min ⁡ { m , n } {\rm col\_rank}(X) \leqslant \min\{m,n\} col_rank(X)min{ m,n}
逻辑关系: b = b.1 ∨ b.2 (b 是 b.1 或者 b.2)

  • 情形 b.1 min ⁡ { m , n } = n \min\{m,n\} = n min{ m,n}=n
    c o l _ r a n k ( X ) = n − d i m [ k e r ( X ) ] ⩽ n {\rm col\_rank}(X) = n - {\rm dim}[{\rm ker}(X)] \leqslant n col_rank(X)=ndim[ker(X)]n
  • 情形 b.2 min ⁡ { m , n } = m \min\{m,n\} = m min{ m,n}=m
    i m ( X ) = { X ⋅ v ∣ v ∈ R n } ⊆ R m {\rm im}(X) = \{X \cdot v \mid v \in \mathbb{R}^n\} \subseteq \mathbb{R}^m im(X)={ XvvRn}Rm
    c o l _ r a n k ( X ) = d i m [ i m ( X ) ] ⩽ d i m [ R m ] = m {\rm col\_rank}(X) = {\rm dim}[{\rm im}(X)] \leqslant {\rm dim}[\mathbb{R}^m] = m col_rank(X)=dim[im(X)]dim[Rm]=m

命题 c c o l _ r a n k ( X + Z ) ⩽ c o l _ r a n k ( X ) + c o l _ r a n k ( Z ) {\rm col\_rank}(X+Z) \leqslant {\rm col\_rank}(X) + {\rm col\_rank}(Z) col_rank(X+Z)col_rank(X)+col_rank(Z)
逻辑关系: c ⇐ c.1 ⇐ c.2 ⇐ c.3 (c.3 平凡)

  • 命题 c.1 d i m [ k e r ( X + Z ) ] ⩾ d i m [ k e r ( X ) ] + d i m [ k e r ( Z ) ] {\rm dim}[{\rm ker}(X+Z)] \geqslant {\rm dim}[{\rm ker}(X)] + {\rm dim}[{\rm ker}(Z)] dim[ker(X+Z)]dim[ker(X)]+dim[ker(Z)]
  • 命题 c.2 k e r ( X + Z ) ⊇ k e r ( X ) + k e r ( Z ) {\rm ker}(X+Z) \supseteq {\rm ker}(X) + {\rm ker}(Z) ker(X+Z)ker(X)+ker(Z)
  • 命题 c.3 ∀ v ∈ R n , X ⋅ v = 0   ∧   Z ⋅ v = 0 → ( X + Z ) ⋅ v = 0 \forall v \in \mathbb{R}^n, X \cdot v = 0 ~ \wedge ~ Z \cdot v = 0 \rightarrow (X+Z) \cdot v = 0 vR
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值