前馈神经网络FNNs和多层感知机MLPs的区别

前馈神经网络(feed-forward neural networks,FNNs)和多层感知机(multi-layer perceptrons,MLPs)在实践中通常被用作同义词,但在某些情况下,它们可能有一些微小的区别。

1.前馈神经网络FNNs
通常情况下,FNN是指一种神经网络模型,其中信息从输入层流向输出层,不涉及循环或反馈。FNN可以是单层的(只有输入和输出层),也可以是多层的(有一个或多个隐藏层)。在这个意义上,MLP也是FNN的一种。

2.多层感知机MLPs
然而,有时候MLP会指代一种具体的FNN模型,其中有多个隐藏层,每个隐藏层都使用非线性激活函数来产生非线性变换。这种模型也称为深度前馈神经网络(deep feed-forward neural networks)。在这种情况下,MLP是一种特定类型的FNN。

因此,FNN和MLP通常被认为是同义词,但有时候MLP会用来特指具有多个非线性隐藏层的FNN。

注意:多层感知机(MLP)和卷积神经网络(CNN)都是前馈神经网络(FNNs)的一种 ,它们都是由输入层、一个或多个隐藏层和输出层组成,其中信息从输入层流向输出层,不涉及循环或反馈。所以可以说,MLP是最基本的前馈神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值