Intel GPA 确定基本的GPU/CPU瓶颈

本文探讨了GPU和CPU在游戏开发中的性能瓶颈,包括GPU因复杂shader、存储资源或大量命令而受限,以及CPU与GPU同步问题。通过实例分析,发现瓶颈随场景变化,如相机移动时CPU瓶颈,静止时VSync影响。推荐使用工具如IntelVTuneProfiler和GraphicsFrameAnalyzer诊断问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 典型以GPU为瓶颈的场景:

  • 硬件队列繁忙的执行command buffers且没有空隙
  • Driver queue持续累积等待GPU执行的command buffers
  • 平均指令执行时间(Average command buffer execution time)超过了期待的FPS速率

注:Buffer execution time是从command buffer出现在队列中到执行完它的最后一条指令所需时间。这个时间越长,越说明瓶颈在GPU。
在这里插入图片描述

一般来说,瓶颈在GPU出于以下原因:在GPU上跑了非常复杂的shaders;消耗存储空间的资源比如几何或贴图;或者command buffers中提交了太多的绘制命令。

2. 瓶颈在于VSync的场景:

  • 硬件队列有空隙,说明GPU没有完全繁忙
  • Driver queue有空隙,说明CPU的图形学负载足够低
  • Frame time比VSync intervals短
    注:Frame time是从第一个frame package出现在队列中,直到最后一个frame package执行完的时间段。
    在这里插入图片描述

3. 典型瓶颈在于CPU的场景:

  • 硬件队列尺寸小并且有空隙。这说明GPU在多数时间空闲。
  • Driver queue尺寸足够大。
    在这里插入图片描述在这些条件下一个可能的场景是CPU和GPU同步不充分,比如,GPU可能因等待CPU准备资源而阻塞。这样影响User Mode Driver的同步失调(desynchronization )会造成过多数量的包累积。
    注:以CPU为瓶颈的场景是性能优化中最为复杂的情况。用Intel VTune Profiler来探索渲染过程中的CPU瓶颈,用Graphics Frame Analyzer来探索GPU瓶颈。为了探索CPU瓶颈,你也可以借助Graphics Trace Analyzer中用Debug API和ITT API markup生成的events。

4. 应用多线程GPU的场景:

  • 同时跑超过一个的图形学应用
  • GPU队列已满且包含来自多个线程的包
    注:来自不同进程的包有不同的颜色。
    在这里插入图片描述
    注:在这种情况下,不可能准确的判断应用程序瓶颈在GPU还是CPU。停止所有无关的应用程序,然后重新捕获trace再分析。

实战分析:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述对比:
在这里插入图片描述
结论:
相机移动时,瓶颈在CPU。
相机稳定后,瓶颈在VSync。

参考链接:
https://www.intel.com/content/www/us/en/resources-documentation/developer.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值