改变世界的 17 个方程式( 17 Equations that Changed the World)

本文介绍了改变世界的17个方程式,包括勾股定理、对数、微积分、万有引力定律等。这些方程式在科学、工程、医学等领域发挥着重要作用,深刻影响了人类历史。例如,勾股定理是几何学基石,对数简化了复杂计算,微积分则创建了现代世界。每个方程式都代表了人类智慧的重大突破,对人类文明产生了深远影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

勾股定理

对数

微积分

万有引力定律

复数

多面体欧拉定理

正态分布

波动方程

傅里叶变换

纳维-斯托克斯方程

麦克斯韦方程组

热力学第二定律

相对论

薛定谔方程

信息理论

混沌理论

布莱克-斯科尔斯公式


        2013年,英国数学家伊恩·斯图尔特(Ian Stewart)在其著作《追求未知》中,罗列出改变了世界的 17 个方程式:

        这些方程式深切改变了,并正在和将要改变着我们的过去,现在和未来。下面让我们纵览一下这些个方程式,借以向其发明者致以最崇高的敬意!

勾股定理

        公元前11世纪,西周初数学家 商高 发现勾股定理并完成证明,提出“勾三、股四、弦五”之特例。

        在西方,最早提出并证明此定理的为公元前6世纪古希腊的 毕达哥拉斯 学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而西方人都习惯地称这个定理为毕达哥拉斯定理(Pythagoras’ Theorem)。

        勾股定理被认为是论证几何的发端,它是历史上第一个把数与形联系起来的定理,也是历史上第一个给出了完全解答的不定方程。被誉为“几何学的基石”。

        勾股定理帮助我们创造了更好的地图。我们用这个定理来求最短的距离。对于建筑,木工或其他物理建筑项目,也是一个处处用得着的方程式。

对数

        16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J. Napier,1550~1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数。对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。

        恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”

        在没有计算器之前,对数帮助我们进行繁琐的计算。它们在科学和测量方面尤其明显。当我们讨论非常小和非常大的数字时,我们总是使用对数。例如,当我们研究对光的敏感度、地震的意义、分贝的噪音水平、酸度(pH)、以固定利率增长的货币、在皮氏培养皿中生长的细菌和放射性衰变时,我们使用对数。

微积分

        十七世纪下半叶,在前人工作的基础上,英国大科学家 牛顿 和德国数学家 莱布尼茨 分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)

        微积分帮助我们从神秘主义和炼金术转向理性科学。在现代科学技术中,它无处不在,无论是我们模拟股票市场的涨跌,还是确定一枚太空火箭何时会进入地球轨道。基本上,微积分创造了现代世界。它通过建模和控制系统,对物理世界拥有不可思议的力量。它是医学专家、科学家、工程师、统计学家、物理学家和经济学家的

### Python 中求解包含 1 到 13 数字并满足四个方程式的方法 要解决这个问题,可以利用 Python 的 `itertools` 库来枚举可能的排列组合,并通过条件筛选找到符合条件的结果。以下是详细的解决方案: #### 方法概述 为了找出满足给定约束条件的解,可以通过以下方式实现: - 使用 `itertools.permutations` 来生成从数字 1 到 13 的全排列。 - 遍历这些排列,并逐一验证是否满足所有的方程。 假设我们有如下形式的四个方程(具体方程可以根据实际需求调整): \[ f_1(a, b, c...) = \text{True} \] \[ f_2(d, e, f...) = \text{True} \] \[ f_3(g, h, i...) = \text{True} \] \[ f_4(j, k, l...) = \text{True} \] 其中 \(a\) 至 \(l\) 是从 1 到 13 的不同数字。 --- #### 实现代码示例 ```python from itertools import permutations def solve_equations(): # 假设这是我们需要验证的四个方程 def equation1(nums): return nums[0] + nums[1] == nums[2] # 示例方程1 def equation2(nums): return nums[3] * nums[4] == nums[5] # 示例方程2 def equation3(nums): return nums[6] - nums[7] == nums[8] # 示例方程3 def equation4(nums): return nums[9] ** nums[10] == nums[11] # 示例方程4 numbers = list(range(1, 14)) # 范围是从1到13 solutions = [] for perm in permutations(numbers): if (equation1(perm) and equation2(perm) and equation3(perm) and equation4(perm)): solutions.append(perm) return solutions solutions = solve_equations() for solution in solutions: print(solution) ``` 上述代码实现了以下几个功能: 1. 定义了四个方程作为布尔表达式函数[^1]。 2. 使用 `permutations` 枚举所有可能的排列。 3. 对每种排列进行验证,如果满足全部方程,则将其加入结果列表。 注意:此方法的时间复杂度较高,因为需要遍历 \(13!\) 种可能性。对于更复杂的场景,建议采用启发式搜索或其他优化技术减少计算开销。 --- #### 关键点分析 1. **全排列生成** 使用 `itertools.permutations` 可以高效地生成不重复的排列组合[^2]。 2. **条件过滤** 将每个排列代入预定义的方程组中进行验证,只有完全匹配的情况才会被记录下来。 3. **性能考量** 如果问题规模较大或者方程数量较多,应考虑引入剪枝策略或使用其他高级算法降低时间消耗[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值