这道zoj的题目,主要运用的是求最小生成树的知识,我用的是kruskal算法,当然,用取权值最小边的最小堆和查看是否有回路的并查集是自己实现的。但提交了几次都没成功,查了下,原来是自己的输出格式没有正确。看来以后要特别注意这方面的问题。
#include <iostream>
#include <queue>
#include <cstdio>
#include <cmath>
#include <memory.h>
using namespace std;
/**********************堆***************************/
int heapNum=0; //记录堆的结点个数
//堆的结点结构
struct Heap
{
int sta,en;
double weight;
} heap[5000];
//下滑操作
void siftDown(int start,int end)
{
//将start号结点向下调整直到end
int i=start,j=2*i;
heap[0]=heap[i]; //用heap[0]来临时保存i结点的值
while(j<=end)
{
//有右孩子并且右孩子比左孩子小时,将j保存右孩子
if(j<end&&heap[j].weight>heap[j+1].weight) ++j;
//比j号结点小时,不需调整
if(heap[0].weight<=heap[j].weight)
break;
else
{
//向下调整
heap[i]=heap[j];
i=j;
j=2*j;
}
}
heap[i]=heap[0];
}
void siftUp(int start)
{
int j=start,i=j/2;
heap[0]=heap[j];
while(j>0)
{
if(heap[i].weight<=heap[0].weight)
break;
else
{
//向上调整工作
heap[j]=heap[i];
j=i;
i=i/2;
}
}
heap[j]=heap[0];
}
//插入操作的实现
bool insert(Heap temp)
{
++heapNum;
heap[heapNum]=temp;
siftUp(heapNum);
return true;
}
//删除操作
bool removeMin(Heap& temp)
{
//保留下根结点
temp=heap[1];
heap[1]=heap[heapNum]; //填补树根
--heapNum;
siftDown(1,heapNum); //将根结点下滑到尾部
return true;
}
/***************************并查集********************/
int parent[101];
//查找i所在的集合的元首,并对该树形结构进行优化
int collaspingFind(int i)
{
int r=i;
for(;parent[r]>=0;r=parent[r]);
while(i!=r)
{
int s=parent[i];
parent[i]=r;
i=s;
}
return r;
}
void weightedUnion(int i,int j)
{
int temp=parent[i]+parent[j];
//负数值大的反而小,树i的结点较小时
if(parent[j]<parent[i])
{
parent[i]=j; //将i的父亲设为j
parent[j]=temp;
}
else
{
parent[j]=i;
parent[i]=temp;
}
}
/******************************图模块*********************************/
struct LinkNode
{
int vex; //邻接的结点在数组中的编号
LinkNode* next;
double weig; //结点的权值
};
//定义图结点的最大个数
const int MaxSize=101;
struct Node
{
//int data;
LinkNode* head;
//将结点邻接的链表头置为空
Node(){ head=0;}
} Adj[MaxSize]; //Adj数组表示原来的图
//坐标结构体
struct Coord
{
double x;
double y;
} coord[101];
//求坐标中两点距离的函数
double sqrtCoord(const Coord& c1,const Coord& c2)
{
return sqrt((c1.x-c2.x)*(c1.x-c2.x)+(c1.y-c2.y)*(c1.y-c2.y));
}
//建立图的算法
void createLink(int& numNode)
{
int numLink=0;
LinkNode* ptr=0;
//赋初值
memset(Adj,0,sizeof(Adj));
for(int i=1;i<=numNode;++i)
scanf("%lf%lf",&coord[i].x,&coord[i].y);
for(int i=1;i<=numNode;++i)
{
//头插入建表
for(int j=i+1;j<=numNode;++j)
{
ptr=new LinkNode;
ptr->vex=j;
ptr->weig=sqrtCoord(coord[i],coord[j]);
ptr->next=Adj[i].head;
Adj[i].head=ptr;
}
}
}
/**************************最小生成树的模块*****************/
//将图中的所有边存入堆中
void inHeap(int& numNode)
{
//将堆的结点个数重置为0
heapNum=0;
memset(heap,0,sizeof(heap));
LinkNode* ptr=0;
for(int v=1;v<=numNode;++v)
{
ptr=Adj[v].head;
//每个邻接点都有机会访问
while(ptr!=0)
{
//将图中的边和所关联的两个结点压入堆中
Heap temp;
temp.sta=v;
temp.en=ptr->vex;
temp.weight=ptr->weig;
insert(temp);
ptr=ptr->next; //到下个邻接点
}
}
}
//求出最小生成树的权值之和
void kruskal()
{
int nodeNum=0;
int testNum=1; //程序执行的次数
while(scanf("%d",&nodeNum)!=EOF&&nodeNum!=0)
{
createLink(nodeNum);
//初始化并查集
for(int i=1;i<=nodeNum;++i)
parent[i]=-1;
//将所有边存入堆中
inHeap(nodeNum);
int cntNum=1;
double miniLen=0.0;
while(cntNum<nodeNum)
{
Heap temp;
//取堆中权值最小的结点
removeMin(temp);
int stRoot=collaspingFind(temp.sta);
int enRoot=collaspingFind(temp.en);
if(stRoot!=enRoot)
{
weightedUnion(stRoot,enRoot);
miniLen+=temp.weight;
++cntNum;
}
}
//要特别注意输出格式!!前几次提交应格式错误告终。。
if(testNum!=1 )
printf( "\n" );
printf( "Case #%d:\n",testNum);
printf( "The minimal distance is: %.2lf\n",miniLen);
++testNum;
}
}
int main()
{
kruskal();
}