数据科学 8 (补充)参数估计与凸优化

主要内容:

  • a

8.1 参数估计

8.1.1 类型

点估计 —— 估计未知参数的值
• 矩估计
• 极大似然估计
• 最小二乘估计法
• 贝叶斯估计

区间估计: —— 估计未知参数的取值范围,使得这个范围包含未知参数真值的概率为给定的值。

8.1.2 各种估计的优缺点

1、矩估计

矩估计的优点:
• 不依赖总体的分布,简便易行
• 只要n充分大,精确度也很高。

矩估计的缺点:
• 矩估计的精度较差;
• 要求总体的某个k阶矩存在;
• 要求未知参数能写为总体的原点矩的函数形式

2、 极大似然函数

极大似然估计的优点 :
•利用了分布函数形式, 得到的估计量的精度一般较高。

极大似然估计的 缺点:
•要求必须知道总体的分布函数形式

8.1.3 机器学习算法的超参数

在这里插入图片描述

8.1.4 交叉验证与网格搜索

1、交叉验证思路

实现:https://blog.csdn.net/yueguizhilin/article/details/77711789

2、网格搜索实现
for k in k_range:
	knn = KNeighborsClassifier(n_neighbors=k)
	scores = cross_val_score(knn,X,y,cv=10,scoring='accuracy')
	k_scores.append(scores.mean())

8.2 凸优化

8.2.1 标准优化问题

8.2.2 凸优化问题

8.2.3 仿射集(Affine set)

在这里插入图片描述

8.2.4 凸集

在这里插入图片描述
典型的凸集

A、线段,射线,直线
B、超平面,半空间
C、仿射集
D、欧几里得球,范数球,椭球等
E、凸锥,范数锥等

1、凸函数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

irober

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值