数据科学 8 参数估计与凸优化
主要内容:
- a
8.1 参数估计
8.1.1 类型
点估计 —— 估计未知参数的值
• 矩估计
• 极大似然估计
• 最小二乘估计法
• 贝叶斯估计
区间估计: —— 估计未知参数的取值范围,使得这个范围包含未知参数真值的概率为给定的值。
8.1.2 各种估计的优缺点
1、矩估计
矩估计的优点:
• 不依赖总体的分布,简便易行
• 只要n充分大,精确度也很高。
矩估计的缺点:
• 矩估计的精度较差;
• 要求总体的某个k阶矩存在;
• 要求未知参数能写为总体的原点矩的函数形式
2、 极大似然函数
极大似然估计的优点 :
•利用了分布函数形式, 得到的估计量的精度一般较高。
极大似然估计的 缺点:
•要求必须知道总体的分布函数形式
8.1.3 机器学习算法的超参数
8.1.4 交叉验证与网格搜索
1、交叉验证思路
实现:https://blog.csdn.net/yueguizhilin/article/details/77711789
2、网格搜索实现
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
scores = cross_val_score(knn,X,y,cv=10,scoring='accuracy')
k_scores.append(scores.mean())
8.2 凸优化
8.2.1 标准优化问题
8.2.2 凸优化问题
8.2.3 仿射集(Affine set)
8.2.4 凸集
典型的凸集:
A、线段,射线,直线
B、超平面,半空间
C、仿射集
D、欧几里得球,范数球,椭球等
E、凸锥,范数锥等