数据科学 11 不平衡数据问题处理及组合模型

主要内容:

  • 不平衡分类概述
  • 欠采样法
  • 过采样法
  • 综合采样

11.1 不平衡数据问题

11.1.1 背景

以往我们认为数据是对称分布的,即正负样本的数量相当。

实际上,数据存在嘈杂且不平衡。

11.1.2 处理方法

11.1.3 数据处理全流程

注意事项:
1、评估指标:精确度(Precise Rate)、召回率(Recall Rate)、Fmeasure或ROC曲线、精确度召回曲线(precision-recall curve);不要使用准确度(Accurate Rate)
2、不要使用模型给出的标签,而是要概率估计;得到概率估计之后,不要盲目地使用0.50的决策阈值来区分 类别,应该再检查表现曲线之后再自己决定使用哪个阈值。

11.1.4 处理方法详解

1、随机过抽样与欠抽样

过采样会随机复制少数样例以增大它们的规模。欠采样则随机地少采样主要的类。

2、欠采样: Tomek Link方法

样本相近的配对,并删除样本量多的那一类,样本量少的内部其他类样本也删除。

3、过采样: SMOTE方法的实现

缺点:插入引起结论错误的点。

4、综合采样

检验哪种方法更好,只有试了才知道。

11.2 组合模型

主要内容:

  • 集成学习概述
    • 装袋法(Bagging)
    • 提升(boosting)
  • 随机森林
  • Adaboost算法
  • 提升树、 GBDT和XGBoost
  • 偏差(Bias) -方差(Variance)权衡与集成方法

11.2.1 集成学习概述

1、装袋(Bagging)

1)、从样本集中重采样(有重复的)选出n个样本
2)、在所有属性上,对这n个样本建立分类器(ID3、 C4.5、 CART、 SVM、 Logistic回归等)
3)、重复以上两步m次,即获得了m个分类器
4)、将数据放在这m个分类器上,最后根据这m个分类器的投票结果,决定数据属于哪一类
优势:

  • 准确率明显高于组合中任何单个的分类器、
  • 对于较大的噪音,表现不至于很差,并且具有鲁棒性
  • 不容易过度拟合
    效果:
    在这里插入图片描述
2、提升(boosting)算法

Boosting的过程,绿色的线表示目前取得的模型(模型是由前m次得到的模型合并得到的),虚线表示当前这次模型。每次分类的时候,会更关注分错的数据,上图中,红色和蓝色的点就是数据,点越大表示权重越高。
在这里插入图片描述
优点: 可以获得比bagging更快的收敛速度
缺点:容易过度拟合

11.2.2 随机森林

1、概述
  • 是用装袋法在行列上进行随机抽样
  • 由很多决策树分类器组合而成(因而称为“森林”)
  • 单个的决策树分类器用随机方法构成。首先,学习集是从原训练集中通过有放回抽样得到的自助样本。其次,参与构建该决策树的变量也是随机抽出,参与变量数通常大大小于可用变量数。
  • 单个决策树在产生学习集和确定参与变量后,使用CART算法计算,不剪枝
  • 最后分类结果取决于各个决策树分类器简单多数选举
    优点:
  • 准确率可以和神经网络媲美,比逻辑回归高
  • 对错误和离群点更加鲁棒性
  • 决策树容易过度拟合的问题会随着森林规模而削弱
  • 在大数据情况下速度快,性能好
2、深度随机森林

周志华团队和蚂蚁金服合作:用分布式深度森林算法检测套现欺诈
在这里插入图片描述

11.2.3 Adaboost算法

1、算法步骤

对于二分类问题,给定训练样本{ ( x i , y i ) ∣ i = 1 , 2 , ⋯   , N (x_i,y_i)|i=1,2,\cdots,N (xi,yi)i=1,2,,N}, y i ∈ { − 1 , + 1 } y_i\in\{-1,+1\} yi{1,+1}。AdaBoost训练若干棵分类树 G m ( x ) G_m(x) Gm(x),每棵分类树都是个弱分类器,这些弱分类器线型加权组合在一起构成一个强分类器 f ( x ) = ∑ m = 1 M α m G m f(x)=\sum\limits_{m=1}^M\alpha_mG_m f(x)=m=1MαmGm
1.初始时每个样本赋予相同的权重 w 1 i = 1 N w_{1i}=\dfrac{1}{N} w1i=N1
2.进行M轮迭代,第m轮迭代产生一个弱分类器 G m ( x ) G_m(x) Gm(x)
(1)采用使分类错误率最低的方法找到最佳的切分点,形成弱分类器 G m ( x ) : x → { − 1. + 1 } G_m(x):x\rightarrow\{-1.+1\} Gm(x):x{1.+1}
(2)计算 G m ( x ) G_m(x) Gm(x)在所有样本上的分类错误率 e m = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i e_m=\sum\limits_{i=1}^Nw_{mi}I(G_m(x_i)\not=y_i em=i=1NwmiI(Gm(xi)=yi
即分类错误率 e m e_m em G m ( x ) G_m(x) Gm(x)误分样本的权重之和。
(3)计算 G m ( x ) G_m(x) Gm(x)的权重 α m \alpha_m αm α m = 1 2 l o g 1 − e m e m \alpha_m=\dfrac{1}{2}log\dfrac{1-e_m}{e_m} αm=21logem1em
e m < 1 2 e_m<\dfrac{1}{2} em<21 α m > 0 \alpha_m>0 αm>0,且 e m e_m em越小 α m \alpha_m αm越大,即分类错误率越小的弱分类器在最终的分类器 f ( x ) f(x) f(x)中权重越大。
(4)更新每个样本的权重。在下一轮迭代中 w m + 1 , i = w m i Z e x p ( − α m y i G m ( x i ) ) ) w_{m+1,i}=\dfrac{w_{mi}}{Z}exp(-\alpha_my_iG_m(x_i))) wm+1,i=Zwmiexp(αmyiGm(xi))) Z是归一化因子,确保所有样本权重之和为1。样本i被错误分类时 y i G m ( x i ) < 0 y_iG_m(x_i)<0 yiGm(xi)<0,此时 w m + 1 , i > w m i w_{m+1,i}>w_{mi} wm+1,i>wmi,即被错误分类的样本在下次迭代时得到高的权重。
3.最终分类器 G ( x ) = s i g n ( f ( x ) ) = s i g n ( ∑ m = 1 M α m G m ( x ) ) G(x)=sign(f(x))=sign(\sum_{m=1}^M\alpha_mG_m(x)) G(x)=sign(f(x))=sign(m=1MαmGm(x))
例子可参考李航的《统计学习方法》。

11.2.4 提升树与梯度提升树(GBDT)

1、提升树

以Y为连续变量为例,演示提升树 f M ( x ) = ∑ m = 1 M T ( x ; Θ m ) f_M(x)=\sum\limits_{m=1}^MT(x;\Theta_m) fM(x)=m=1MT(x;Θm)
其中, T ( x ; Θ m ) T(x;\Theta_m) T(x;Θm)表示决策树; Θ m \Theta_m Θm为决策树的参数;M为树的个数。
提升树的迭代算法: f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m ) f_m(x)=f_{m-1}(x)+T(x;\Theta_m) fm(x)=fm1(x)+T(x;Θm) Θ m ^ = a r g min ⁡ Θ m ∑ i = 1 N L ( y i , f m − 1 ( x i ) + T ( x i ; Θ m ) ) \hat{\Theta_m}=arg \min\limits_{\Theta_m}\sum\limits_{i=1}^NL(y_i,f_{m-1}(x_i)+T(x_i;\Theta_m)) Θm^=argΘmmini=1NL(yi,fm1(xi)+T(xi;Θm))

2、GBDT (Bradient Boosting Decision Tree)

Boost思想用在树生长上,即子节点的预测值 y ( t ) y^{(t)} y(t)是在父节点的预测值 y ( t − 1 ) y^{(t-1)} y(t1)的基础上前进一小步。
Boost思想用在森林的扩展上就是GBDT,即第t轮迭代的预测值依赖于第t-1轮的预测结果: y i ^ ( t ) = ∑ k = 1 t f k ( x i ) = y i ^ ( t − 1 ) + f t ( x i ) \hat{y_i}^{(t)}=\sum\limits_{k=1}^tf_k(x_i)=\hat{y_i}^{(t-1)}+f_t(x_i) yi^(t)=k=1tfk(xi)=yi^(t1)+ft(xi)
其中f(x)表示一棵决策树,第t轮迭代生成一棵树 f t f_t ft,第t轮迭代对样本 x i x_i xi的预测值等于第t-1轮迭代对 x i x_i xi的预测值加上 f t f_t ft x i x_i xi的预测值。核心问题是: f t f_t ft取多少才能使 y i ^ ( t ) = y i ^ ( t − 1 ) + f t ( x i ) \hat{y_i}^{(t)}=\hat{y_i}^{(t-1)}+f_t(x_i) yi^(t)=yi^(t1)+ft(xi)尽可能地接近真实值 y i y_i yi呢?这变为一个优化问题: arg ⁡ min ⁡ f t ( x i ) l o s s ( y i , y i ^ ( t − 1 ) + f t ( x i ) ) \arg \min\limits_{f_t(x_i)} loss(y_i,\hat{y_i}^{(t-1)}+f_t(x_i)) argft(xi)minloss(yi,yi^(t1)+ft(xi))
利用二阶泰勒展开式,可得: l o s s ( y i , y i ^ ( t − 1 ) + f t ( x i ) ) = l o s s ( y i , y i ^ ( t − 1 ) ) + g i f t ( x i ) + 1 2 h i f t 2 ( x i ) loss(y_i,\hat{y_i}^{(t-1)}+f_t(x_i))=loss(y_i,\hat{y_i}^{(t-1)})+g_if_t(x_i)+\dfrac{1}{2}h_if_t^2(x_i) loss(yi,yi^(t1)+ft(xi))=loss(yi,yi^(t1))+gift(xi)+21hift2(xi)
其中, g i = ∂ l o s s ( y i , y i ^ ( t − 1 ) ) ∂ y i ^ ( t − 1 ) g_i=\dfrac{\partial loss(y_i,\hat{y_i}^{(t-1)})}{\partial \hat{y_i}^{(t-1)}} gi=yi^(t1)loss(yi,yi^(t1)), h i = ∂ 2 l o s s ( y i , y i ^ ( t − 1 ) ) ∂ 2 y i ^ ( t − 1 ) h_i=\dfrac{\partial^2 loss(y_i,\hat{y_i}^{(t-1)})}{\partial^2 \hat{y_i}^{(t-1)}} hi=2yi^(t1)2loss(yi,yi^(t1))
二次函数在 f t ( x i ) = − g i h i f_t(x_i)=-\dfrac{g_i}{h_i} ft(xi)=higi处取极小值,同牛顿法,Gradient由此而来。 f t ( x i ) f_t(x_i) ft(xi)确定后,可采用回归树或Boosted回归树来拟合。

3、XGBoost

GBDT每次新建的树并没有力图构建一个最合理的新树。XGboost则希望新加入的树是最优的。其每次建树是在最优化以下的目标函数: O b j ( Θ ) = L ( Θ ) + Ω ( Θ ) Obj(\Theta)=L(\Theta)+\Omega(\Theta) Obj(Θ)=L(Θ)+Ω(Θ)
其中, L ( Θ ) L(\Theta) L(Θ):误差函数、 Ω ( Θ ) \Omega(\Theta) Ω(Θ):正则化项,惩罚复杂模型

11.2.4 偏差(Bias) -方差(Variance)权衡与集成方法

1、偏差-方差权衡
2、bagging与boosting的直观理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

irober

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值