迹运算丨trace与matlab实现

本文探讨了迹运算在理论上的重要性,如主对角线和的求和,以及Frobenius范数的矩阵表示。通过实例展示了如何在Matlab中计算迹和Frobenius范数,并介绍了迹运算的一些特性,如转置不变性和矩阵乘积的迹性质。
摘要由CSDN通过智能技术生成

一、理论知识

迹运算返回的矩阵对角元素的和:

T r ( A ) = ∑ i A i , i Tr(A)=\sum_{i}{A_{i,i}} Tr(A)=iAi,i
若不使用求和符号,有些矩阵运算很难描述,而通过矩阵乘法和迹运算符号,可以清楚地表示。例如,迹运算提供了另一种描述矩阵 Frobenius 范数的方式:
∣ ∣ A ∣ ∣ F = T r ( A A T ) ||A||_F=\sqrt{Tr(AA^T)} AF=Tr(AAT)

Frobenius
范数,即矩阵元素绝对值的平方和再开平方。范数

用迹运算表示表达式,我们可以使用很多有用的等式来操纵表达式。例如,迹运算在转置运算下是不变的:
T r ( A ) = T r ( A T ) Tr(A) = Tr(A^T) Tr(A)=Tr(AT)
多个矩阵乘积的迹,和将这些矩阵中最后一个挪到最前面之后乘积的迹是相同的。当然,我们需要考虑挪动之后矩阵乘积依然定义良好:
T r ( A B C ) = T r ( C A B ) = T r ( B C A ) Tr(ABC) = Tr(CAB) = Tr(BCA) Tr(ABC)=Tr(CAB)=Tr(BCA)

即使循环置换后矩阵乘积得到的矩阵形状变了,迹运算的结果依然不变。例如,假设矩阵 A ∈ R m × n A ∈ R^{m×n} ARm×n,矩阵 B ∈ R n × m B ∈ R^{n×m} BRn×m,我们可以得到:
T r ( A B ) = T r ( B A ) Tr(AB) = Tr(BA) Tr(AB)=Tr(BA)
即使 A B ∈ R m × m AB∈R^{m×m} ABRm×m B A ∈ R n × n BA∈R^{n×n} BARn×n
另一个有用的事实是标量在迹运算后仍然是它自己: a = T r ( a ) a=Tr(a) a=Tr(a)

二、Matlab 实现

定义矩阵A:a = [1 2 3;4 5 6;7 8 9]

% 矩阵a
a =

     1     2     3
     4     5     6
     7     8     9

输入:
% 求迹,主对角线之和

>>trace(a)

ans =

    15

% Frobenius 范数

>> norm(a,'fro')

ans =

   16.8819

% 上述公式实现

>> sqrt(trace(a*a'))

ans =

   16.8819
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值