论文浏览(42) Action Genome: Actions as Composition of Spatio-temporal Scene Graphs


0. 前言

  • 相关资料:
  • 论文基本信息
    • 领域:时空行为检测
    • 作者单位:斯坦福大学
    • 发表时间:CVPR 2020

1. 要解决什么问题

  • 在计算机视觉中,我们将行为(actions or activities)作为一个完整的整体。
  • 但其实在认知科学(Cognitive Science)和神经学的研究中发现,人的行为被编码为一个 hierarchical part structures。

2. 用了什么方法

  • 提出了一个数据集(其实是在Charades的基础上进行再标注):
    • 将行为看作是 Action Genome(行为基因组)
    • 即,将行为分解为时空场景图(spatio-temporal scene graphs)。
    • 捕捉行为发生时,人与物体之间的关系。
  • 常见数据集对比
    • image_1ei5kpli117rnn9uc431gvh9769.png-73.4kB
  • 所谓关系,如下图所示
    • Charades中所谓的relation,指的是clip level的
    • Action Genome中的relation是 image-level 的
    • image_1ei5ll5i21n1a10e12feuvn1k6tm.png-86.8kB
  • 人周边物体有很多,参考下图
    • image_1ei5lmumb1saq1j8a65i10751ph13.png-869.8kB
  • 说是提出了一种结构 SGFB 来处理,没细看
    • image_1ei5mnjgusbv17rl18buijg1i4e2n.png-222.7kB

3. 效果如何

  • 通过Action Genome可实现普通Charades分类,few-shot任务以及Spatio-temporal scene graph prediction
    • image_1ei5mha60c3g17sh12ge162o1aua1g.png-73.3kB
    • image_1ei5mhi0lml81pqic4qfefv5u1t.png-48.4kB
    • image_1ei5mi38qmra1hbr15g01aikkas2a.png-99.9kB

4. 还存在什么问题&有什么可以借鉴

  • 这数据集好是好,但感觉要用到实际应用中比较麻烦……需要后续研究下细节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值