conda和pip两种方式在anaconda3.9中安装pytorch+cpu版踩坑

在pytorch安装中,参考了很多前人的方法,但仍然踩坑,目前没有安装成功。

一、conda安装

先是在pytorch官网上试着用conda安装,

 同时添加了conda安装清华源的唯一镜像源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

目前conda的镜像源如下,使用命令进行查看:

conda config --show-sources

 

 接着又按照一般方法(他人的帖子)进行了安装:

 一般方法

 如同这篇所说的,conda安装不成,报了一堆版本不匹配的错误,遂踏上漫漫不归的pip安装之路;

二、pip 安装

pip安装,首先考虑我这台新电脑上换源的问题,这时候我才意识到虽然以往会换源,但从来没意识到conda换源和pip换源要分开进行,pip安装和conda安装也应当分别进行,最好一个环境中保持统一。之前也出现过conda和pip安装冲突问题,可以说是踩了一堆坑。。。

目前搜了下,关于如何理解conda、pip、全局的pip以及每个虚拟环境中的pip问题,仍然没有找到相关资源进行深刻理解。现在的理解是,在anaconda的各个虚拟环境中,只要指定了python版本,就会有对应的pip.exe,想使用虚拟环境中单独的pip.exe,仅对该环境中添加一些包,可使用:

python -m pip <packege>

也可以单独用conda安装,但是为了避免麻烦,还是使用上面那种,详见我之前的博文

annaconda 虚拟环境安装包pip安装与conda 安装冲突混乱问题

3、正式开始探索

试图在全局的pip中更换清华源:

 可以看到我pip的镜像源的文件pip.ini所在位置。不存在pip.exe,只有pip文件夹

 而我希望pip的虚拟环境中的pip:

 使用

python -m pip <packege>

虚拟环境中pip可以用到pip.ini中的镜像源吗?不知道,接下来继续探索,

首先激活并进入虚拟环境,查看当前环境下安装包:

可以看到pytorch没有安装成功,而且一般创建虚拟环境后的pip都不是最新版,所以要先更新pip:

还是谨慎地使用python -m 更新pip:

python -m pip install --upgrade pip

 

 先用pytorch官网的版本库的命令进行安装:

Previous PyTorch Versions | PyTorch

 把 -c pytorch 去掉,因为-c pytorch指定只能从pytorch安装,但是显然我们安装了pip的清华源镜像,故不用加这个后缀:

conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly

过程中没来的及截图,基本没问题,很快安装好了。但是安装完才发现!我还是用conda安装的啊!!!! 至于第一次为什么安装错,报了torchvision和torch的各种冲突错误,应该是使用这条命令

conda install pytorch torchvision torchaudio cpuonly

没有指定版本的关系。 

 

查看当前虚拟环境安装包:用命令 conda list:

可以看到pytorch1.4在conda list里,而且来源为conda pytorch 镜像源了。

然后验证!

 持续报错,心灰意冷,不知所措。似乎是没截图的安装过程中清华源中的一些冲突,不死心,看到有些文中要重复安装,遂决定再试:

只有一个pip要安装??? 

果然仍然报错。。。。

重新创建新环境!

1、创建名为pytorch的虚拟环境:

conda create -n pytorch python==3.6

2、更新pip

python -m pip install --upgrade pip

 

 2、查看安装包

 3、pip安装pytorch,查看官网过往版本

 可以看到有:

pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

 改为:

python -m pip install torch==1.4.0+cpu torchvision==0.5.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

运行界面:

最终: 

 

查看当前conda list:

 看上去没问题,进一步验证。

 仍旧报错。

在网上查了一下这个error,把怀疑指向了安装的python版本不对,python、torch、torchvision存在版本对应问题,而后两者版本对应是在官网上安装的,那么只可能是python版本与后两者不匹配了,调查后发现有人指出python3.6.0版本不匹配问题

4、升级python

这里参考了一篇博客https://blog.csdn.net/weixin_42006387/article/details/115334219?ops_request_misc=&request_id=&biz_id=102&utm_term=pip%20install%20torch==1.4.0+cpu%20t&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-115334219.nonecase&spm=1018.2226.3001.4187icon-default.png?t=M276https://blog.csdn.net/weixin_42006387/article/details/115334219?ops_request_misc=&request_id=&biz_id=102&utm_term=pip%20install%20torch==1.4.0+cpu%20t&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-115334219.nonecase&spm=1018.2226.3001.4187

使用命令:

 conda install python==3.6.7

 现在的conda list:

 最终测试:

哈哈,总算成功了。

所以最终的完成版本是python3.6.7 +

torch==1.4.0+cpu torchvision==0.5.0+cpu

三、对conda 命令安装cpu版本pytorch的进一步改进

用pip安装完,回头再去看之前pytorch14虚拟环境中用conda命令安装报错,怀疑也可能是python版本问题,于是同样升级python到3.6.7

 检查 conda list发现,用conda 安装pytorch比用pip安装多了很多包,这个错误跟numpy版本有关,那么会不会是一开始创建python版本时就错了呢?于是我又建了一个环境,这次虚拟环境从一开始就设定python版本为3.6.7.

果然是python环境的问题。

四、总结

这次在新电脑上安装了cpu版本的pytorch,总结一下:

第一,pytorch有两种安装方式,conda和pip,在创建虚拟环境前一定要安装好对应的conda 的 pytorch 清华镜像源,以及pip对应的源; 

第二,在虚拟环境创建时,一定要决定好python、pytorch、orchvision三者的版本对应关系。后两者的版本对应关系一定要在pytorch官网上找好。我这次仅仅确定了python3.6.7与pytorch1.4.0的对应关系,也因为一开始没重视这些对应关系而走了很多弯路,在深度学习中,环境与安装包的版本一定要对应!!!重点的一定要记住!!!

第三,创建虚拟环境后,第一件事情查看conda list,当前环境安装包,其次一定要更新虚拟环境中的pip,每次创建虚拟环境后都要及时更新,然后再安装其他包!

安装成功。一下午结束了。

从零开始搭建基于Anaconda、PyCharm以及PyTorchCPU本)的开发环境,你需要进行以下步骤: 1. 安装Anaconda: 首先,从Anaconda官网下载适合你操作系统的Anaconda安装包。根据你使用的系统(Windows、macOS、Linux)选择相应的安装程序。下载完成后,运行安装程序并按照指示完成安装。在安装过程,请确保Anaconda被添加到系统的PATH环境变量,这样你就可以在命令行直接使用conda命令。 2. 创建一个新的虚拟环境: 打开Anaconda命令提示符或者终端,然后使用conda创建一个新的虚拟环境。例如,如果你想创建一个名为“pytorch-env”的环境,并安装Python 3.8本,你可以使用以下命令: ``` conda create -n pytorch-env python=3.8 ``` 创建完成后,激活这个虚拟环境: ``` conda activate pytorch-env ``` 3. 安装PyTorchCPU本): 在激活的虚拟环境,你可以使用conda或者pip命令来安装PyTorchCPU本。推荐使用conda命令,因为它会处理依赖问题,你可以直接使用下面的命令来安装: ``` conda install pytorch cpuonly -c pytorch ``` 这将安装PyTorch及其CPU本的依赖。 4. 安装PyCharm: 从PyCharm官网下载适合你操作系统的PyCharm社区或专业安装包,并按照提示完成安装。社区是免费的,而专业需要购买许可证。 5. 配置PyCharm以使用Anaconda虚拟环境: 打开PyCharm,创建一个新项目,并在项目创建过程选择解释器。在解释器配置窗口,点击齿轮图标并选择“Add”,然后选择“Conda Environment”。PyCharm会自动检测已安装conda环境,选择之前创建的“pytorch-env”环境作为项目解释器。 完成以上步骤后,你就建立了一个配置了Anaconda虚拟环境和PyTorchCPU)的PyCharm开发环境,可以开始你的机器学习或深度学习项目了。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值