Matlab:Voronoi 图

本文介绍了如何在Matlab中绘制二维Voronoi图和Delaunay三角剖分,以及如何计算二维和三维Voronoi图的拓扑。通过示例展示了Voronoi图与Delaunay三角剖分的关系,以及如何进行最近邻点查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


离散点集 X 的 Voronoi 图将每个点 X(i) 周围的空间分解成影响区域 R{i}。这种分解具有的属性是区域 R{i} 中的任意点 P 比任何其他点更靠近点 i。这种影响区域称为 Voronoi 区域,所有 Voronoi 区域的集合构成 Voronoi 图。

Voronoi 图是一个 N 维几何结构,但是大多数实际应用程序是位于二维和三维空间中的。使用一个示例最好理解 Voronoi 图的属性。

绘图二维 Voronoi 图和 Delaunay 三角剖分

本示例在同一个二维图上显示 Voronoi 图和 Delaunay 三角剖分。

使用二维 voronoi 函数绘制某一点集的 Voronoi 图。

figure()
X = [-1.5 3.2; 1.8 3.3; -3.7 1.5; -1.5 1.3; ...
      0.8 1.2; 3.3 1.5; -4.0 -1.0;-2.3 -0.7; ...
      0 -0.5; 2.0 -1.5; 3.7 -0.8; -3.5 -2.9; ...
     -0.9 -3.9; 2.0 -3.5; 3.5 -2.25];
 
voronoi(X(:,1),X(:,2))

% Assign labels to the points.
nump = size(X,1);
plabels = arrayfun(@(n) {sprintf('X%d', n)}, (1:nump)');
hold on
Hpl =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值