随机变量的函数的概率密度函数

文章目录

问题描述

已知 X ∼ P X ( x ) X \sim P_X(x) XPX(x) Y = f ( X ) Y = f(X) Y=f(X),求 Y Y Y 的概率密度函数 P Y ( y ) P_Y(y) PY(y).

f f f 为递增函数时,考察 Y Y Y 的累计分布函数 F Y ( y ) F_Y(y) FY(y):
F Y ( y ) = P r ( Y ≤ y ) = P r ( X ≤ f − 1 ( y ) ) = F X ( f − 1 ( y ) ) F_Y(y) = Pr(Y \leq y) = Pr(X \leq f^{-1}(y)) = F_X(f^{-1}(y)) FY(y)=Pr(Yy)=Pr(Xf1(y))=FX(f1(y))

P Y ( y ) = d F Y ( y ) d y = P X ( f − 1 ( y ) ) d f − 1 ( y ) d y P_Y(y) = \frac{dF_Y(y)}{dy} = P_X(f^{-1}(y))\frac{df^{-1}(y)}{dy} PY(y)=dydFY(y)=PX(f1(y))dydf1(y)

P Y ( y ) = d F Y ( y ) d y = P X ( x ) d x d y P_Y(y) = \frac{dF_Y(y)}{dy} = P_X(x)\frac{dx}{dy} PY(y)=dydFY(y)=PX(x)dydx


f f f 为递减函数时,
F Y ( y ) = P r ( Y ≤ y ) = P r ( X ≥ f − 1 ( y ) ) = 1 − F X ( f − 1 ( y ) ) F_Y(y) = Pr(Y \leq y) = Pr(X \geq f^{-1}(y)) = 1-F_X(f^{-1}(y)) FY(y)=Pr(Yy)=Pr(Xf1(y))=1FX(f1(y))

P Y ( y ) = d F Y ( y ) d y = − P X ( f − 1 ( y ) ) d f − 1 ( y ) d y P_Y(y) = \frac{dF_Y(y)}{dy} = -P_X(f^{-1}(y))\frac{df^{-1}(y)}{dy} PY(y)=dydFY(y)=PX(f1(y))dydf1(y)

综上所述,
P Y ( y ) = d F Y ( y ) d y = P X ( f − 1 ( y ) ) ∣ d f − 1 ( y ) d y ∣ P_Y(y) = \frac{dF_Y(y)}{dy} = P_X(f^{-1}(y))\left|\frac{df^{-1}(y)}{dy}\right| PY(y)=dydFY(y)=PX(f1(y))dydf1(y)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值