问题描述
已知 X ∼ P X ( x ) X \sim P_X(x) X∼PX(x), Y = f ( X ) Y = f(X) Y=f(X),求 Y Y Y 的概率密度函数 P Y ( y ) P_Y(y) PY(y).
解
当
f
f
f 为递增函数时,考察
Y
Y
Y 的累计分布函数
F
Y
(
y
)
F_Y(y)
FY(y):
F
Y
(
y
)
=
P
r
(
Y
≤
y
)
=
P
r
(
X
≤
f
−
1
(
y
)
)
=
F
X
(
f
−
1
(
y
)
)
F_Y(y) = Pr(Y \leq y) = Pr(X \leq f^{-1}(y)) = F_X(f^{-1}(y))
FY(y)=Pr(Y≤y)=Pr(X≤f−1(y))=FX(f−1(y))
故
P
Y
(
y
)
=
d
F
Y
(
y
)
d
y
=
P
X
(
f
−
1
(
y
)
)
d
f
−
1
(
y
)
d
y
P_Y(y) = \frac{dF_Y(y)}{dy} = P_X(f^{-1}(y))\frac{df^{-1}(y)}{dy}
PY(y)=dydFY(y)=PX(f−1(y))dydf−1(y)
即
P
Y
(
y
)
=
d
F
Y
(
y
)
d
y
=
P
X
(
x
)
d
x
d
y
P_Y(y) = \frac{dF_Y(y)}{dy} = P_X(x)\frac{dx}{dy}
PY(y)=dydFY(y)=PX(x)dydx
当
f
f
f 为递减函数时,
F
Y
(
y
)
=
P
r
(
Y
≤
y
)
=
P
r
(
X
≥
f
−
1
(
y
)
)
=
1
−
F
X
(
f
−
1
(
y
)
)
F_Y(y) = Pr(Y \leq y) = Pr(X \geq f^{-1}(y)) = 1-F_X(f^{-1}(y))
FY(y)=Pr(Y≤y)=Pr(X≥f−1(y))=1−FX(f−1(y))
故
P
Y
(
y
)
=
d
F
Y
(
y
)
d
y
=
−
P
X
(
f
−
1
(
y
)
)
d
f
−
1
(
y
)
d
y
P_Y(y) = \frac{dF_Y(y)}{dy} = -P_X(f^{-1}(y))\frac{df^{-1}(y)}{dy}
PY(y)=dydFY(y)=−PX(f−1(y))dydf−1(y)
综上所述,
P
Y
(
y
)
=
d
F
Y
(
y
)
d
y
=
P
X
(
f
−
1
(
y
)
)
∣
d
f
−
1
(
y
)
d
y
∣
P_Y(y) = \frac{dF_Y(y)}{dy} = P_X(f^{-1}(y))\left|\frac{df^{-1}(y)}{dy}\right|
PY(y)=dydFY(y)=PX(f−1(y))∣∣∣∣dydf−1(y)∣∣∣∣