凸函数的梯度的单调性 (Monotonicity of gradient)

可微函数 f f f 是凸函数 当且仅当 d o m f domf domf 是凸集,且 ( ▽ f ( x ) − ▽ f ( y ) ) T ( x − y ) > 0 ,      ∀ x , y ∈ d o m f (\bigtriangledown f(x)-\bigtriangledown f(y))^T(x-y)>0, \;\; \forall x,y \in dom f (f(x)f(y))T(xy)>0,x,ydomf ▽ f : R n → R n \bigtriangledown f: \R^n \rightarrow \R^n f:RnRn 是单调映射(monotone mapping)。


证明:

  1. 如果 f f f 是可微的凸函数,则有 f ( y ) ≥ f ( x ) + ▽ f ( x ) T ( y − x ) , f ( x ) ≥ f ( y ) + ▽ f ( y ) T ( x − y ) . f(y) \geq f(x) + \bigtriangledown f(x)^T(y-x),\\ f(x) \geq f(y) + \bigtriangledown f(y)^T(x-y). f(y)f(x)+f(x)T(yx),f(x)f(y)+f(y)T(xy).将上面两式相加得 ( ▽ f ( x ) − ▽ f ( y ) ) T ( x − y ) > 0 (\bigtriangledown f(x)-\bigtriangledown f(y))^T(x-y)>0 (f(x)f(y))T(xy)>0
  2. 如果 ▽ f \bigtriangledown f f 是单调的,定义函数 g g g : g ( t ) = f ( x + t ( y − x ) ) ,    t ∈ [ 0 , 1 ] g ′ ( t ) = ▽ f ( x + t ( y − x ) ) T ( y − x ) g(t) = f(x+t(y-x)), \;t \in [0,1]\\ g'(t) = \bigtriangledown f(x+t(y-x))^T(y-x) g(t)=f(x+t(yx)),t[0,1]g(t)=f(x+t(yx))T(yx)则由 g ′ ( t ) g'(t) g(t) 的连续性以及 g ′ ( 1 ) − g ′ ( 0 ) > 0    且    g ′ ( 0 ) − g ′ ( 0 ) = 0 g'(1)-g'(0) >0 \;且\; g'(0)-g'(0) = 0 g(1)g(0)>0g(0)g(0)=0 g ′ ( t ) − g ′ ( 0 ) ≥ 0 ,      g'(t) -g'(0) \geq 0,\;\; g(t)g(0)0,因此 f ( y ) = g ( 1 ) = g ( 0 ) + ∫ 0 1 g ′ ( t ) d t ≥ g ( 0 ) + g ′ ( 0 ) = f ( x ) + ▽ f ( x ) ) T ( y − x ) f(y) = g(1) = g(0) + \int_0^1 g'(t)dt \geq g(0) + g'(0) \\= f(x) + \bigtriangledown f(x))^T(y-x) f(y)=g(1)=g(0)+01g(t)dtg(0)+g(0)=f(x)+f(x))T(yx) f f f 为凸函数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颹蕭蕭

白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值