python实现用SIFT+K-MEANS+SVM图片分类

用python实现图片分类过程

1. 按图片类别抽取训练集中所有图片的SIFT特征;

2. 将每一类图片的SIFT特征聚类为K类,构成该类的visual vocabulary(其size为K);

3. 对于训练集中的每一张图片,统计vocabulary中K个word的“词频”,得到相应的直方图;

4. 将直方图作为样本向量即可构建SVM的训练数据和测试数据;

运行的环境:

windows7+python 2.7.9+opencv 2.4.9+numpy


  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 17
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值