文章目录
Hi,你好。我是茶桁。
这节课开始,我们将会讲一个比较重要的一种神经网络,它对应了咱们整个生活中很多类型的一种问题结构,它就是咱们的RNN网络。
咱们首先回忆一下,上节课咱们学到了一些深度学习的一些进阶基础。
学了很多神经网络的Principles, 就是它的一些很重要的概念,比方层数维度。再然后咱们讲了Optimizer, 一些优化方式。还有weights的initialization,初始化等等。
那么大家具备了这些知识之后,那我们基本上已经能够解决常见的大概90%的机器学习问题了。
我们现实生活中绝大多数的机器学习问题,或者说识别问题都可以把它抽象成要么是分类,要么是回归问题。
一个柯基的例子
我们来一个例子,比方说一张图片里这个是什么动物,这显然是一个分类问题。