【深度学习2】DataLoader的collate_fn参数

这篇文章详细介绍了如何在PyTorch中使用collate_fn函数来自定义数据加载器的行为,包括如何组织输入样本和处理caption等复杂结构。通过实例展示了如何根据句子长度和ID对数据进行预处理,使得数据适配于模型训练。
摘要由CSDN通过智能技术生成

参考文章:https://blog.csdn.net/weixin_42028364/article/details/81675021

collate_fn是torch.utils.data.DataLoaderd的参数之一,用来定义如何取样,可以不赋值,也可以自己定义函数来实现自己想要的功能。

比如:

def collate_fn(data):
    images,captions, sentence_num, max_word_num, image_id = zip(*data)
    images = torch.stack(images, 0)
    max_sentence_num = max(sentence_num) 
    max_word_num = max(max_word_num)
    prob = np.zeros((len(captions), max_sentence_num + 1))
    for i, caption in enumerate(captions):
        for j, sentence in enumerate(caption):
            prob[i][j] = len(sentence) > 0
    return images, targets, prob, image_id



data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                          batch_size=batch_size,
                                          shuffle=shuffle,
                                          collate_fn=collate_fn, 
                                          num_workers=num_workers)



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值