机器学习保存与导入训练模型

通过保存训练好的模型,可以避免每次重新训练,提高程序效率。本文以sklearn的joblib模块为例,介绍如何在朴素贝叶斯模型中进行模型的保存和导入操作。
摘要由CSDN通过智能技术生成

当我们训练好一个模型后,下次如果还想要使用这个模型。那么我们可以将这个模型保存下来,下次使用的时候直接导入就可以了,这样节省了时间,不用每次都重头训练数据,程序运行速度更快。

这里我们使用sklearn提供的模块joblib来保存模型。

from sklearn.linear_model import LinearRegression
from sklearn.externals import joblib
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split


#获取数据
lb = load_boston()

#分割数据集到训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(lb.data,lb.target,test_size=0.25)

#特征值和目标值是都必须进行标准化处理,实例化两个标准化API
std_x = StandardScaler()

x_train = std_x.fit_transform(x_train)
#用转化训练集的标准归一化测试集
x_test = std_x.transform(x_test)

#目标值
std_y = StandardScaler()

# -1表示系统自动计算行数,1表示列数
y_train = std_y.fit_transform(y_train.reshape(-1,1))
y_test = std_y.transform(y_test.reshape(-1,1))

#正规方程求解方式预测结果
lr = LinearRegression()

#训练模型
lr.fit(x_train,y_train)

#保存训练好的模型
joblib.dump(lr,'test.pkl')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值