豆瓣9.3,这本书火了29年,被哈佛、剑桥、清华等1500多所大学用作教材!

文末赠书

有这样一本经典巨著。

畅销全球100多个国家和地区火了29年的超绝影响力;被哈佛、剑桥、清华等1500多所大学用作教材,启蒙无数AI大牛;权威到一旦人们对某些人工智能的概念发生争议时,就会以它的讲述为准;获奖无数,一版再版,版版豆瓣9.0+高分,稳居各大平台人工智能类图书榜单前列。

它就是由加州大学伯克利分校的教授斯图尔特·罗素(Stuart Russell)和斯坦福大学人工智能研究所的杰出教育研究员彼得·诺维格(Peter Norvig),两位深耕人工智能领域数十年的资深专家合著的人工智能教材典范——《人工智能:现代方法(第4版)》

e451c98915de47660c7cdbea16ac9290.png

点击下方即可购书,限时特惠

5折

01

这本人工智能教科书怎么做到爆火29年?

20世纪90年代,随着多层反向传播算法(Multilayer Backpropagation)、卷积神经网络(Convolutional Neural Network,CNN)等技术的问世,经历了第一次寒潮的人工智能开始复苏,再一次成为热门的前沿技术。

1994年,AAAI秋季人工智能入门教学研讨会召开。Stuart Russell和Peter Norvig在阅读了会议的立场文件后,注意到市面上缺乏能全面介绍人工智能的理论和实践方法的书籍。如果有这样一本综合性的教科书,那对推动人工智能的发展将会尤为重要,因此,他们决定合作撰写一本能够填补这一空白的书籍。

1995年,《人工智能:现代方法》第1版问世即爆火,成了AI界的标杆教材,被评为“人工智能大百科全书”

正如书籍的副书名“现代方法”所说,作者们用现代的眼光来聊人工智能的故事,使用当今流行的思想和术语重新构建早期的工作,将现有已知的内容融合到统一的框架中。因此,随着AI技术的不断突破,这本书也定期推出新版,一直走在人工智能教育的最前线。2003年,出版第2版,2009年发布第3版。

2028a2c6c03e14a930571e94cc032b3d.png

如今,在经历深度学习革命和AI技术的快速发展后,《人工智能:现代方法(第4版)》也应运而生。

这一版,书的内容全面翻新,不仅添了多智能体系统和深度学习的新鲜事儿,还深挖了人工智能的哲学、伦理和安全问题。书中把人工智能的发明和成长历程讲得明明白白,从逻辑、概率到连续数学,再到感知、推理、学习、行动,还有公平、信任、社会公益和安全,方方面面都讲到了。应用场景也是从小小的电子设备到高大上的机器人行星探测器,再到服务亿万用户的在线服务,全都有。

08e022095ac5d5b33e4fa9c66d71ff28.png

而且,这本书的配套资源特别丰富,不管是自己学还是拿来教课,都特别合适。

a76f73430d6f8bf60b316248b20e841e.png

d14294dee9e55e60306c0c61737a6732.png

难怪它会被翻译成13种语言,爆火长达29年之久!

02

这本书的作者有多牛?

把人工智能的林林总总探索都梳理一遍,编成一本大全式的教材,这任务挺考验人。作者得有硬核的学术背景,还得有广博的知识面,要是表达能力也强,那就更完美了。幸运的是,这本书的两位作者就是这样的牛人。

b6bbef962af24d0a7c9258767359235c.png

Stuart Russell(斯图尔特·罗素)

Stuart Russell是加州大学伯克利分校的一位杰出教授,曾在电气工程和计算机科学系担任系主任。他在牛津大学获得了物理学学士学位,并在斯坦福大学取得了计算机科学博士学位。

作为人工智能领域的权威人物,Russell教授是多个专业协会的会员,包括AAAI、ACM和AAAS。他因在计算机科学教育方面的卓越贡献获得了ACM Karl Karlstrom杰出教育家奖。此外,Russell 教授还曾在巴黎担任Blaise Pascal主席,并获得了ANR高级卓越主席的荣誉。

39fa1f6e9ffbe8650069eeafbcc6fca3.png

Peter Norvig(彼得·诺维格)

Peter Norvig是斯坦福大学人工智能研究所的杰出教育研究员,前谷歌研究总监。他曾经带领谷歌的搜索算法核心团队和研究小组为搜索引擎的发展做出了重要贡献。在NASA Ames研究中心,他担任过计算科学部门的领导,并且作为高级计算机科学家,他还荣获了2001年的NASA杰出成就奖。

Peter Norvig的教育背景同样令人印象深刻,他在1986年取得了博士学位,并且在2006年获得了加州大学伯克利分校的杰出校友奖。此外,他在教育上的贡献也不容小觑,他联合讲授的人工智能课程吸引了超过160,000名学生,这门课程的成功也推动了当前大规模开放式在线课程(MOOC)的潮流。

2016年,两位大师因为这本极具开创性的著作《人工智能:现代方法》获得了AAAI / EAAI杰出教育家奖。正如在仪式上提到的那样,他们的工作“激发了全世界新一代的科学家和工程师”

37b0273469f6d7dd20cae5a1879af342.png

03

这本书到底启蒙了多少AI大牛?

《动手学深度学习》作者、ICLR杰出论文奖、亚马逊资深科学家阿斯顿·张(Aston Zhang.)在本科人工智能课上拜读:

“本科时我曾在人工智能课上学过这本书的第3版。很多年过去了,深度学习给世界带来了惊喜,推动了自然语言处理、计算机视觉、机器人学的快速发展,也为社会带来了伦理、公平性和安全性的新挑战。我很欣喜地看到第4版引入了这些领域大量的最新研究成果。如果你想了解人工智能的全貌,不要错过这本书。“

清华大学计算机科学与技术系长聘副教授刘知远在清华大学读博期间学习了第3版:

”本书是享誉世界的人工智能经典教材,我在读博期间就学习过其第3版,内容全面翔实,介绍深入浅出,既是初学者理想的入门教材,也是人工智能从业者的案头参考书。很高兴这本书的第4版被译介到国内,新版增加了2010年以来深度学习等最新前沿技术动态,新章节的贡献者有朱迪亚·珀尔(Judea Pearl)和伊恩·古德费洛(lan Goodfellow)等知名学者。期待这本新版教材更好地推动我国人工智能的发展。”

复旦大学大数据学院长聘副教授魏忠钰在学生时代跟着这本教材入门人工智能,从教后,又以本书为教材带领学生入门人工智能:

“我个人与这本书也有很深的缘分。在学生时代,这是我学习人工智能的教材,带我入门。从教之后,我又以本书为教材讲授人工智能,反复翻看,常读常新。我从学生到老师,整个时间跨度超过10年,而这本书也出了新的版本。希望它可以陪伴更多读者深索人工智能的世界。”

04

这本经典巨著应该怎么读?

由于这本书足有千页之厚,知识点密密麻麻,信息量爆棚,因此不同的读者可能得用不同的读法来消化:

▮ 如果你是搞AI研究的研究生、教授或者企业内的研究员,那就得认真啃每一章,有需要的话,连带参考书目也得看看,这样才能把AI的精髓吃透。

▮ 如果你是本科生,那就得跟着老师的步伐挑重点章节来读。特别是从本书的第四部分开始,内容更新也更关键,得重点攻克。不过,第一部分对AI的全面介绍也很棒,对所有人都很有帮助。

▮ 如果你是已经对AI有所了解,并且在工作中需要用到AI技术,比如工程师或者博士生,就把这本书当工具书用。书的每个部分,甚至每一章都设计得很独立,跳着读也没关系。哪里不会看哪里,按图索骥,方便得很。

▮ 如果你不是计算机专业的,只是一名AI爱好者,那就先看看第一部分和最后部分。当然,如果你愿意通读全书,那也没问题,书的语言通俗易懂,逻辑清晰,不需要你非得是技术大拿。跟着作者的思路一步步来,不懂的地方先跳过去,重要的是理解概念和方法的原理。

总之,这本书就是个宝库,怎么挖,看你自己啦。

福利时刻:先到先得

本次将送出 5本 作为粉丝福利 ,社区积分直接兑换!
兑换地址:http://spring4all.com/fuli-huodong
社区福利每周1-2次,快来一起来参与社区内容的建设,一起学习一起成长吧!
点击阅读原文,查看更多社区福利!
1 Introduction and scope 2 Reasoning: goal trees and problem solving 3 Reasoning: goal trees and rule-based expert systems 4 Search: depth-first, hill climbing, beam 5 Search: optimal, branch and bound, A* 6 Search: games, minimax, and alpha-beta 7 Constraints: interpreting line drawings 8 Constraints: search, domain reduction 9 Constraints: visual object recognition 10 Introduction to learning, nearest neighbors 11 Learning: identification trees, disorder 12 Learning: neural nets, back propagation 13 Learning: genetic algorithms 14 Learning: sparse spaces, phonology 15 Learning: near misses, felicity conditions 16 Learning: support vector machines 17 Learning: boosting 18 Representations: classes, trajectories, transitions 19 Architectures: GPS, SOAR, Subsumption, Society of Mind 20 The AI business 21 Probabilistic inference I 22 Probabilistic inference II 23 Model merging, cross-modal coupling, course summary PROBLEM SETS TOPICS CODE FILES Problem Set 0 (PDF) Python programming, symbolic algebra Code for Problem Set 0 (ZIP) (This ZIP file contains: 5 .py files.) Problem Set 1 (PDF) Forward chaining, backward chaining and goal trees Code for Problem Set 1 (ZIP) (This ZIP file contains: 7 .py files.) Problem Set 2 (PDF) Search, using heuristics, optimal search, graph heuristics Code for Problem Set 2 (ZIP) (This ZIP file contains: 5 .py files.) Problem Set 3 (PDF) Game search Code for Problem Set 3 (ZIP) (This ZIP file contains: 7 .py files.) Problem Set 4 (PDF) Constraint satisfaction problems, k-nearest neighbors, decision trees Code for Problem Set 4 (ZIP) (This ZIP file contains: 12 .py files, 6 .ord files, 4 .csv files and 2 .dat files. sudoku_csp.py is courtesy of Justin Cullen, and is used with permission.) Problem Set 5 (PDF) Neural nets, boosting Code for Problem Set 5 (ZIP - 1.2MB) (This ZIP file contains: 12 .py files, 2 .dat files, 5 .csv files, 6 .ord files, 1 .out file, and 9 .tab files.)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值