48、生物序列分析中的插入缺失重评估与基序自然选择量化

生物序列分析中的插入缺失重评估与基序自然选择量化

1. 插入缺失重评估

在生物序列比对中,插入缺失(indel)的准确评估至关重要。为了更好地评估比对中的插入缺失,研究人员提出了基于Pair HMM的间隙统计方法。

1.1 评估指标

在评估插入缺失时,常用的指标有召回率(Recall)和精确率(Precision)。召回率的计算公式为 (Recall = \frac{TP}{TP + FN}),精确率(也称为阳性预测值PPV)的计算公式为 (Precision = \frac{TP}{TP + FP})。其中,真正例(TP)是指在参考结构比对中被正确分类为可靠的间隙位置;假正例(FP)是指被分类为可靠但在参考比对中找不到的间隙位置;真负例(TN)是指未被分类为可靠且不是结构插入缺失位置的间隙位置;假负例(FN)是指未被分类为可靠但实际上是真正结构插入缺失位置的间隙位置。

1.2 不同策略下的结果

研究人员采用了SigD和Const两种策略进行评估。SigD策略通过降低参数θ来评估,而Const策略则通过增加插入缺失长度来评估。以下是不同召回率下,两种策略对应的参数和插入缺失长度的关系:
| 召回率 | Sig7 -log(θ) | Sig7 IL | Sig4 -log(θ) | Sig4 IL | Sig1 -log(θ) | Sig1 IL | Con -log(θ) | Con IL |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0

需求响应动态冰蓄冷系统需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建算法实现过程,点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值