生物序列分析中的插入缺失重评估与基序自然选择量化
1. 插入缺失重评估
在生物序列比对中,插入缺失(indel)的准确评估至关重要。为了更好地评估比对中的插入缺失,研究人员提出了基于Pair HMM的间隙统计方法。
1.1 评估指标
在评估插入缺失时,常用的指标有召回率(Recall)和精确率(Precision)。召回率的计算公式为 (Recall = \frac{TP}{TP + FN}),精确率(也称为阳性预测值PPV)的计算公式为 (Precision = \frac{TP}{TP + FP})。其中,真正例(TP)是指在参考结构比对中被正确分类为可靠的间隙位置;假正例(FP)是指被分类为可靠但在参考比对中找不到的间隙位置;真负例(TN)是指未被分类为可靠且不是结构插入缺失位置的间隙位置;假负例(FN)是指未被分类为可靠但实际上是真正结构插入缺失位置的间隙位置。
1.2 不同策略下的结果
研究人员采用了SigD和Const两种策略进行评估。SigD策略通过降低参数θ来评估,而Const策略则通过增加插入缺失长度来评估。以下是不同召回率下,两种策略对应的参数和插入缺失长度的关系:
| 召回率 | Sig7 -log(θ) | Sig7 IL | Sig4 -log(θ) | Sig4 IL | Sig1 -log(θ) | Sig1 IL | Con -log(θ) | Con IL |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
超级会员免费看
订阅专栏 解锁全文
4万+

被折叠的 条评论
为什么被折叠?



