多项式相关知识全解析
1. 多项式基础
多项式 (p(t)) 是变量 (t) 的有限和形式,表达式为 (p(t) = a_0 + a_1t + \cdots + a_nt^n = \sum_{k=0}^{n}a_kt^k) 。这里的 (a_0, a_1, \cdots, a_n) 是常数或系数,通过与变量 (t) 的幂次 (1, t, \cdots, t^n) 相乘后求和得到多项式。任何可以通过有限次加、减、乘(不包括除)运算来求值的 (t) 的函数都可归结为多项式。多项式的次数 (n) 决定了它的类型,例如 (n = 0) 时是常数多项式,(n = 1) 是线性多项式,(n = 2) 是二次多项式,(n = 3) 是三次多项式,(n = 4) 是四次多项式等等。
2. 多项式的基本性质
- 代数结构 :多项式具有环的代数结构。这意味着我们可以对多项式及其标量倍数进行任意组合的加、减、乘运算,最终结果仍然是多项式。也就是说,多项式集合在加、减、乘和缩放运算下是封闭的。不过,一般情况下,两个多项式相除的结果通常是有理函数,就像两个整数相除通常得到有理数(分数)一样。
- 微分与积分 :多项式集合在微分和积分运算下也是封闭的。例如,对于 (n) 次多项式 (p(t)) ,它的导数 (p’(t)) 是 (n - 1) 次多项式,其表达式为 (p’(t) = a_1 + 2a_2t + \cdots + na_nt^{n - 1} = \sum_{k=0}^{n - 1}(k + 1)a_{k + 1}t^k) 。更高阶的导数 (p’‘(t), \cdots, p^{(m)}(t
超级会员免费看
订阅专栏 解锁全文
1818

被折叠的 条评论
为什么被折叠?



