机器学习和数据挖掘作为近期人工智能领域的热点话题一直引发人们的关注,小编也一直收到很多留言咨询有哪些好的书籍适合自己进行阅读学习。小编给大家带来28本经典机器学习/数据挖掘相关书籍,分别适合入门、进阶到精深的三个不同阶段同学阅读,并且每本书籍都已标注了适合阅读人群,总有一款适合你。
Real World Machine Learning(现实世界中的机器学习)
作者:Henrik Brink,Joseph W.Richards和Mark Fetherolf
书籍链接:https://www.manning.com/books/real-world-machine-learning
本书介绍了现实世界中机器学习的应用,旨在教会工作开发者ML项目执行的艺术。
An Introduction To Statistical Learning(统计学习介绍)
作者:加雷思詹姆斯,丹尼尔·维滕,特雷弗·哈斯蒂和罗伯特·蒂布拉尼
书籍链接:http://www-bcf.usc.edu/%7Egareth/ISL/
本书提供了统计学习方法的介绍。适合于高年级本科生,硕士研究生和博士学位。非数学科学中的学生。
An Introduction To Statistical Learning(统计学习的要素)
作者:TrevorHastie Robert Tibshirani Jerome Friedman
书籍链接:http://statweb.stanford.edu/%7Etibs/ElemStatLearn/
这本书的覆盖面广泛,从监督学习到无监督学习。涵盖了神经网络,支持向量机,分类树等经典算法。
Probabilistic Programming & Bayesian Methods for Hackers (概率编程与黑客的贝叶斯方法)
书籍链接:http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/
本书综合的从数学和概率编程的角度介绍了贝叶斯方法。
Think Bayes(贝叶斯方法)
作者:Allen B.Downey
书籍链接:http://greenteapress.com/wp/think-bayes/
</