【GitHub项目推荐--微软开源了大规模对话系统GPT】【转载】

大规模对话预训练  Large-scale pretraining for dialogue

微软开源了 目标导向对话 大模型

源代码

microsoft/GODEL: Large-scale pretrained models for goal-directed dialog (github.com)

GODEL(Goal-Oriented Dialogue Pre-training with Large-scale Pre-training)指的是针对目标导向对话进行的大规模预训练。目标导向对话,也称为任务导向对话,是指对话系统旨在帮助用户完成某个具体任务,如订机票、查询天气或预订餐厅等。

在对话系统中,预训练模型在提高系统性能方面发挥着重要作用。通过在大规模语料库上进行预训练,模型可以学习到丰富的语言知识和对话模式,从而更好地理解和生成对话。

GODEL的预训练过程通常包括以下几个步骤:

  1. 数据收集:收集大量的目标导向对话数据,这些数据可以来自真实的对话记录、模拟对话或人工生成的对话。

  2. 数据处理:对收集到的对话数据进行清洗、标注和格式化等处理,以便用于模型的训练。

  3. 模型构建:构建一个深度学习模型,如Transformer模型,作为对话生成和理解的基础。

  4. 预训练任务设计:设计合适的预训练任务,如对话生成、对话理解、对话状态跟踪等,以使模型能够学习到对话中的关键信息和模式。

  5. 大规模预训练:使用收集到的对话数据对模型进行大规模预训练,通过优化算法不断调整模型参数,使模型在预训练任务上达到较好的性能。

  6. 微调与评估:在特定任务的数据集上对预训练模型进行微调,并评估模型在目标导向对话任务上的性能。

通过GODEL的大规模预训练,对话系统可以更好地理解和生成与目标任务相关的对话,提高用户的满意度和系统的实用性。同时,预训练模型还具有较强的迁移学习能力,可以适应不同的对话场景和任务需求。

原文链接:

震撼!微软开源了大规模对话系统GPT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值