大规模对话预训练 Large-scale pretraining for dialogue
微软开源了 目标导向对话 大模型
源代码
microsoft/GODEL: Large-scale pretrained models for goal-directed dialog (github.com)
GODEL(Goal-Oriented Dialogue Pre-training with Large-scale Pre-training)指的是针对目标导向对话进行的大规模预训练。目标导向对话,也称为任务导向对话,是指对话系统旨在帮助用户完成某个具体任务,如订机票、查询天气或预订餐厅等。
在对话系统中,预训练模型在提高系统性能方面发挥着重要作用。通过在大规模语料库上进行预训练,模型可以学习到丰富的语言知识和对话模式,从而更好地理解和生成对话。
GODEL的预训练过程通常包括以下几个步骤:
-
数据收集:收集大量的目标导向对话数据,这些数据可以来自真实的对话记录、模拟对话或人工生成的对话。
-
数据处理:对收集到的对话数据进行清洗、标注和格式化等处理,以便用于模型的训练。
-
模型构建:构建一个深度学习模型,如Transformer模型,作为对话生成和理解的基础。
-
预训练任务设计:设计合适的预训练任务,如对话生成、对话理解、对话状态跟踪等,以使模型能够学习到对话中的关键信息和模式。
-
大规模预训练:使用收集到的对话数据对模型进行大规模预训练,通过优化算法不断调整模型参数,使模型在预训练任务上达到较好的性能。
-
微调与评估:在特定任务的数据集上对预训练模型进行微调,并评估模型在目标导向对话任务上的性能。
通过GODEL的大规模预训练,对话系统可以更好地理解和生成与目标任务相关的对话,提高用户的满意度和系统的实用性。同时,预训练模型还具有较强的迁移学习能力,可以适应不同的对话场景和任务需求。
原文链接: