2016年重大图论
填空题20分
1.非平凡树至少有多少个一次顶点。
2.K5,6的最小覆盖是几
3.库拉托夫斯基定理
4.门格尔定理
5.二部图不含什么
算法题70分
1.用floyd定理求下列4x4的矩阵任意两点间的最短路径和距离
2.有五个游泳运动员X1,X2,X3,X4,X5,有五种游泳方式y1,y2,y3,y4,y5,请问怎么做才能在5x100混合泳接力赛上获得最好的成绩,下面给出这五名运动员的每种泳姿的成绩矩阵,为5x5矩阵。(用最大权值的匹配算法)
3.如下图,即图论P142的图6.39所示的图,求近似最佳H圈,并分析解的近似程度。
4.用可平面性算法证明彼得森图是非平面图。(彼得森图在P161图7.8所示)

本文回顾了2016年的一场图论竞赛,涉及非平凡树的基本性质、K5,6的最小覆盖问题、库拉托夫斯基定理和门格尔定理,算法部分涵盖Floyd算法、最大权值匹配求解、近似最优H圈和非平面图的证明,以及无向树的二部特性。
最低0.47元/天 解锁文章
3642

被折叠的 条评论
为什么被折叠?



