重庆大学研究生课程——图论及其应用2016年期末考试

本文回顾了2016年的一场图论竞赛,涉及非平凡树的基本性质、K5,6的最小覆盖问题、库拉托夫斯基定理和门格尔定理,算法部分涵盖Floyd算法、最大权值匹配求解、近似最优H圈和非平面图的证明,以及无向树的二部特性。

2016年重大图论

填空题20分

1.非平凡树至少有多少个一次顶点。

2.K5,6的最小覆盖是几

3.库拉托夫斯基定理

4.门格尔定理

5.二部图不含什么

算法题70分

1.用floyd定理求下列4x4的矩阵任意两点间的最短路径和距离

2.有五个游泳运动员X1,X2,X3,X4,X5,有五种游泳方式y1,y2,y3,y4,y5,请问怎么做才能在5x100混合泳接力赛上获得最好的成绩,下面给出这五名运动员的每种泳姿的成绩矩阵,为5x5矩阵。(用最大权值的匹配算法)

3.如下图,即图论P142的图6.39所示的图,求近似最佳H圈,并分析解的近似程度。

4.用可平面性算法证明彼得森图是非平面图。(彼得森图在P161图7.8所示)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西科大通信专业

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值