图论及其应用 2018年期末考试 答案总结

本文提供电子科技大学从2007年至2019年图论课程期末考试的部分答案总结,涵盖填空题、选择题及大题解析,涉及生成子图、完全l部图、最小生成树算法、块的定义、强连通分支等核心知识点,旨在帮助学生理解和掌握图论的基本概念与解题技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电子科技大学2019年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2018年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2017年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2016年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2015年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2014年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2013年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2012年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2011年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2010年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2009年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2008年图论期末考试答案总结(不一定正确,仅供参考)

电子科技大学2007年图论期末考试答案总结(不一定正确,仅供参考)

 

电子科技大学 图论 2018年期末考试答案,不一定完全正确,仅供参考。

题号

答案

知识点与备注

填空题

1

2^m

生成子图的定义

2

\sum_{1<=i<j<=l}n_{i}n_{j}

完全l部图定义;PPT上已有结论

3

10

最小生成树算法

4

7

块的定义

5

5

强连通分支的含义

选择题

1

A

 

只要求图的度序列,故和为偶数即可。

A不是偶数,故选A

2

B

 

A:错误 如K2

B 正确,数学归纳

C 错误 如K2

D 错误,如自环或8字形闭迹(如两个C6的一个顶点连在一起)。

3

A

A: 错误,点连通度小于等于边连通度;

B 正确。 由握手定理可证

C 正确。 点连通度<=最小度<=n-1

D 正确 就是定义

4

B

A错误,如8字形闭迹(如两个C6的一个顶点连在一起)。

B 正确 无奇圈

C 错误, 充分条件的否命题不一定成立(只是充分条件不是必要条件)

D 错误 如C6

5

D

A:正确 贝尔热定理 定理1 (贝尔热,1957) G的匹配M是最大匹配,当且仅当G不包含M可扩路。必要性:若含一条M可扩路P,则P中M的边必非M的边少一条,于是可有新的M由P中非M边组成。与M时最大匹配矛盾!

充分性:若不然,设M1是G的一个最大匹配,则|M1|>|M|,令H = M1ΔM。容易知道:G[H]的每个分支或者是由M1与M中边交替组成的偶圈,或者是由M1与M中边交替组成的路。在每个偶圈中,M1与M中边数相等;但因|M1|>|M|,所以,至少有一条路P,其起点和终点都是M非饱和点,于是,它是G的一条M可扩路。这与条件矛盾。

 

B 正确。哥尼定理 定理2 (哥尼,1931) 在偶图中,最大匹配的边数等于最小覆盖的顶点数。

 

C 正确。首先证|X|=|Y|,之后对X中任意子集S,考虑与S关联的边集E1和与N(S)关联的边集E2,则E1包含于E2,可得|S|<=|N(S)|,故由Hall定理存在饱和X的匹配,又因为等部,故有完美匹配。

D 错误,无割边3正则图一定有完美匹配(彼得森定理),但否命题不一定成立。其反例亦有割点。

大题

图序列的判定定理

注意排序即可

证明

对于G的一条边e来说,G的生成树中包含边e的棵数为G.e,而不包含e的棵数为G-e.

由度序列判定定理,存在m<n/2,使得dm<=m且d(n-m)<n-m.

而Cm,n图的度序列恰好满足上述要求。

因此G度弱于该Cm,n图

即G度弱于某个Cm,n图

K(4n+1)可以分解为2n个边不重的2因子的并;而两个边不重的2因子的并可以组合为一个4因子。因此K(4n+1)可以分解为n个4因子。故可以4因子分解。

G*的边数为10,点数为3,且是平面连通图,故由欧拉公式,面数为9.

 

注意:当G不连通时,G的点数不等于G*的面数!故不能通过G的点数来求解!

理想子图计数法

[k]3+2[k]4+[k]5

边染色问题。

最大度为Δ=5;n=7=2*3+1;边数为16>3Δ,故边色数为6.

分组略 

点色数

有K3,故点色数>=3

可找到,故点色数=3

分组略

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值