✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
图像压缩感知 (CS) 作为一种新兴的图像压缩技术,突破了传统奈奎斯特采样定理的限制,通过在低维空间中对信号进行稀疏表示,并利用非线性重构算法恢复原始图像,实现了以远低于奈奎斯特采样率的采样数据进行高效的图像压缩。本文将重点探讨基于置信传播 (Belief Propagation, BP) 算法改进的改进型置信传播 (Generalized Belief Propagation, GBP) 算法在图像压缩感知中的应用,并通过峰值信噪比 (PSNR) 对其压缩性能进行评估分析。
传统的压缩感知框架通常包含三个主要步骤:信号的稀疏变换、测量矩阵的构建以及信号的重构。首先,需要将待压缩图像进行稀疏变换,例如离散余弦变换 (DCT)、小波变换 (Wavelet) 或字典学习等,将图像转换到稀疏表示域,使得图像在该域内具有较少的非零系数。然后,利用测量矩阵对稀疏表示后的系数进行线性投影,得到低维的测量值。最后,通过迭代算法,例如正则化最小二乘法 (LASSO)、迭代硬阈值 (IHT) 或匹配追踪 (MP) 算法等,对低维测量值进行重构,恢复出原始图像。
然而,这些传统的重构算法在处理高维数据时计算复杂度较高,且重构精度受限。基于此,本文引入GBP算法作为图像压缩感知的重构算法。GBP算法是BP算法的一种推广,它能够更好地处理循环图结构中的信息传递,从而提高重构精度。与传统的BP算法相比,GBP算法在消息传递过程中引入了置信度的概念,并通过迭代更新置信度来提高算法的收敛速度和重构精度。 GBP算法的核心在于其对因子图中节点之间消息传递的改进。传统的BP算法假设因子图是树状结构,而在实际应用中,很多因子图都存在环路。环路的存在会导致消息传递过程中出现冗余信息和错误传播,影响算法的收敛性和精度。GBP算法通过引入置信度,有效地减弱了环路的影响,提高了算法的鲁棒性。
在本文的实验中,我们选取了标准测试图像,例如Lena、Barbara和Cameraman等,以不同压缩比对GBP算法的性能进行评估。我们首先对图像进行小波变换,获得其稀疏表示,然后使用高斯随机矩阵作为测量矩阵。通过改变测量矩阵的规模,控制压缩比。最后,利用GBP算法对低维测量值进行重构,并计算重构图像的PSNR值,以衡量压缩性能。PSNR值越高,表示图像重构质量越高,压缩性能越好。
实验结果表明,基于GBP算法的图像压缩感知在不同压缩比下均取得了较好的性能。与传统的LASSO、IHT和MP算法相比,GBP算法在相同的压缩比下能够获得更高的PSNR值,尤其是在高压缩比的情况下,其优势更为明显。这主要是因为GBP算法能够更有效地处理稀疏信号的重构问题,并更好地抑制噪声的影响。此外,我们还对不同参数设置下的GBP算法进行了实验,结果表明,合适的参数设置对算法性能有显著影响。通过调整迭代次数、置信度更新策略等参数,可以进一步提高算法的收敛速度和重构精度。
然而,GBP算法也存在一些不足之处。例如,算法的计算复杂度仍然较高,尤其是在处理高分辨率图像时,计算时间可能会比较长。此外,GBP算法的参数选择也比较敏感,需要根据具体应用场景进行调整。
未来研究方向可以集中在以下几个方面: 首先,可以探索更有效的稀疏变换方法,例如学习字典,以提高图像的稀疏表示效率。其次,可以研究更有效的测量矩阵设计方法,以减少采样数据量,同时保证重构精度。此外,可以进一步改进GBP算法,降低其计算复杂度,并提高其鲁棒性。最后,可以将GBP算法应用于其他类型的图像压缩感知问题,例如视频压缩感知等。
总而言之,本文研究了基于GBP算法的图像压缩感知技术,并通过实验验证了其有效性。GBP算法在图像重构方面表现出优越的性能,为图像压缩感知技术提供了新的思路。 尽管GBP算法仍然存在一些挑战,但随着算法的不断改进和硬件技术的不断发展,基于GBP算法的图像压缩感知技术有望在未来获得更广泛的应用。 进一步的研究将致力于解决算法复杂度和参数选择等问题,以实现更高效、更鲁棒的图像压缩感知系统。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇