考虑储能的电价收益模型研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的深刻转型,可再生能源发电比例的不断提升已成为不可逆转的趋势。然而,光伏、风电等间歇性、波动性电源的广泛接入给电力系统的稳定运行带来了严峻挑战。储能技术作为一种重要的灵活性资源,能够有效地平抑电源波动、改善电能质量、延缓输配电设备升级,并在优化电力系统运行和提升经济效益方面发挥关键作用。本文旨在深入研究考虑储能的电价收益模型,探讨储能系统在不同电力市场和运行策略下的盈利机制与潜力。通过对现有电价政策、储能技术特点以及市场交易规则的综合分析,构建多维度、更贴近实际的储能电价收益模型,并对其进行仿真分析与敏感性探讨,为储能系统的投资决策、商业模式设计和政策制定提供理论支持与实践参考。

关键词: 储能;电价收益;电力市场;套利;削峰填谷;容量服务

引言

电力系统是现代社会赖以运转的生命线。传统的电力系统以可控的火电、水电等为主要电源,通过调度计划实现电力供需平衡。然而,大规模的可再生能源接入打破了这一平衡,其固有的间歇性和波动性给电力系统的安全稳定运行带来了挑战。例如,光伏发电在夜间无法出力,风力发电受风速影响较大,这些不确定性因素使得电力系统的供需平衡更加难以维持,可能导致弃风、弃光现象的发生,造成能源浪费。

储能技术,特别是电化学储能、抽水蓄能等,具有快速响应、灵活可控的特点,能够有效地储存富余电能并在需要时释放,成为解决可再生能源接入挑战的有力工具。通过配置储能系统,可以平滑可再生能源的输出曲线,提高电能质量,减少对传统化石能源的依赖。更重要的是,储能系统能够通过参与电力市场交易获取经济收益,为自身的投资和运行成本提供支撑。

然而,储能系统的经济性并非天然存在,其盈利能力受到多种因素的影响,包括储能技术成本、运行寿命、充放电效率、电力市场的电价机制、辅助服务市场规则、以及储能系统的运行策略等。当前,全球不同国家和地区的电力市场结构和电价政策差异较大,这直接影响了储能系统的盈利模式。例如,在实施分时电价的区域,储能系统可以通过在低谷电价时充电、高峰电价时放电实现套利;在拥有完善辅助服务市场的区域,储能系统可以参与调频、调峰等服务获取收益;在容量市场中,储能系统也可以为其提供的容量能力获得补偿。

因此,建立一个能够准确反映储能系统在不同电力市场环境和运行策略下的电价收益模型,对于指导储能项目的投资决策、优化运行调度、促进储能产业健康发展具有重要意义。本文将从理论和实践层面出发,对储能的电价收益模型进行深入研究。

1. 储能系统的电价收益来源

储能系统的电价收益来源是多样的,主要取决于其参与的电力市场和提供的服务类型。常见的收益来源包括:

  • 分时电价套利 (Arbitrage based on Time-of-Use Pricing):

     这是最常见的储能收益模式之一。在实施分时电价的区域,电价在一天中的不同时段存在显著差异。储能系统可以在电价较低的低谷时段从电网充电,并在电价较高的高峰时段向电网放电,通过差价实现收益。收益计算通常基于充放电电量与对应时段的电价差。

  • 参与辅助服务市场 (Participation in Ancillary Services Market):

     辅助服务市场旨在维护电力系统的稳定运行,包括调频、调峰、备用等。储能系统凭借其快速响应能力,在辅助服务市场中具有显著优势。例如,参与调频服务可以通过快速调整充放电功率来平衡电网频率偏差;参与调峰服务可以在系统负荷高峰或低谷时进行充放电以平抑负荷波动。收益通常按照提供的服务类型和容量进行结算。

  • 容量市场收益 (Capacity Market Revenue):

     在容量市场中,电力系统为确保在需求高峰时有足够的发电和输电能力而向提供容量的资源支付费用。储能系统作为一种灵活的容量资源,可以参与容量市场获取收益。收益通常基于其承诺的可用容量。

  • 延缓输配电设备升级 (Deferral of Transmission and Distribution Upgrade):

     在某些情况下,通过在特定区域配置储能系统,可以缓解输配电线路的重载问题,从而延缓或避免对输配电设备进行升级的巨大投资。虽然这不是直接的电价收益,但可以通过节省的投资成本间接体现储能的价值。

  • 提高可再生能源消纳能力 (Increased Renewable Energy Penetration):

     储能系统能够储存弃风、弃光电量并在需要时释放,提高可再生能源的利用率。这对于依赖可再生能源发电的项目来说,可以通过减少弃电损失来提升收益,尽管这种收益可能不直接体现在电价上,而是通过提高整体发电效率来体现。

  • 参与需求侧响应 (Participation in Demand Response):

     储能系统可以与用户侧的需求侧响应计划相结合,例如在电网负荷紧张时段放电以减少用户从电网的购电量,或者根据电网信号进行充放电。这既可以为用户节省电费,也可以获得电网给予的补贴或奖励。

以上收益来源并非相互独立,储能系统可以根据市场规则和自身能力参与多种服务,实现综合收益最大化。然而,不同收益来源的重要性在不同电力市场和政策环境下差异显著。

2. 电价收益模型的构建

构建一个有效的储能电价收益模型需要综合考虑多种因素,包括电力市场结构、电价政策、储能系统自身的技术特性以及运行策略。本节将探讨构建电价收益模型的基本框架和关键要素。

2.1关键模型要素

  • 电价预测模型 (Electricity Price Forecasting Model):

     准确的电价预测是进行分时电价套利决策的关键。电价预测模型可以基于历史电价数据、负荷预测、可再生能源预测、天气预报等多种因素,采用统计学方法、机器学习算法等进行建模。预测精度直接影响套利收益的计算和调度策略的优化。

  • 储能系统运行约束 (Energy Storage System Operating Constraints):

     储能系统的运行受到多种物理约束,需要在模型中予以考虑:

    • 荷电状态 (State of Charge, SOC):

       储能系统的当前电量,需要在安全运行范围内(最小SOC至最大SOC)。

    • 充放电功率限制 (Charging and Discharging Power Limits):

       储能系统的最大充放电功率限制。

    • 充放电效率 (Charging and Discharging Efficiency):

       充电和放电过程中存在的能量损耗。充电效率和放电效率通常小于1。

    • 循环寿命 (Cycle Life):

       储能电池的循环寿命是其重要的技术参数,频繁的充放电会损耗电池寿命。在长期收益模型中,需要考虑循环寿命对收益的影响,例如通过折旧成本或生命周期成本来体现。

    • 自放电率 (Self-Discharge Rate):

       储能系统在储存能量期间会存在少量能量损失。

  • 运行调度策略 (Operation Scheduling Strategy):

     储能系统的运行策略直接决定了其充放电行为和收益。常见的运行策略包括:

    • 基于分时电价的套利策略:

       根据预测的电价曲线,在低价时充电,高价时放电。

    • 基于辅助服务需求的策略:

       根据辅助服务市场的指令进行快速充放电。

    • 综合优化策略:

       同时考虑分时电价套利和辅助服务等多种收益来源,通过优化算法求解最优的充放电计划,以实现总收益最大化。优化模型通常采用线性规划、混合整数线性规划等方法构建,目标函数为总收益最大化,约束条件包括储能系统运行约束、电网潮流约束(如果考虑接入点电网影响)、市场规则等。

  • 市场规则模型 (Market Rules Model):

     不同的电力市场有不同的交易规则、结算方式、参与资质等。模型需要准确反映这些规则,例如辅助服务的竞价机制、容量市场的补偿机制等。

  • 成本模型 (Cost Model):

     储能系统的投资成本、运行维护成本、充放电过程中的电网费用等也需要纳入考虑。虽然本文主要研究电价收益,但在进行经济性评估时,成本是不可或缺的一部分。

2.2 模型细化与拓展

为了提高模型的准确性和实用性,可以对上述基本框架进行细化和拓展:

  • 考虑不确定性 (Considering Uncertainty):

     电价、可再生能源出力、负荷等都存在不确定性。可以将这些不确定性因素引入模型,例如采用场景分析、鲁棒优化或随机规划等方法,评估不确定性对收益的影响,并制定更具鲁棒性的运行策略。

  • 考虑多用途优化 (Multi-Purpose Optimization):

     储能系统可以同时提供多种服务,例如白天参与光伏平滑出力,夜间参与分时电价套利。模型可以设计为多目标优化模型,在满足不同服务需求的前提下实现综合收益最大化。

  • 考虑电网约束 (Considering Grid Constraints):

     对于大型储能电站,其接入点对电网的影响不容忽视。模型可以纳入电网潮流约束、电压约束等,确保储能系统的运行不会对电网造成不利影响。

  • 考虑储能系统退化 (Considering Energy Storage System Degradation):

     储能电池的性能会随着充放电次数和使用年限而衰退,导致容量下降、效率降低。模型可以考虑电池的退化模型,将退化带来的性能下降纳入收益计算或寿命成本中。

  • 不同储能技术的差异 (Differences in Energy Storage Technologies):

     不同类型的储能技术(如锂离子电池、钠硫电池、液流电池、抽水蓄能等)在成本、效率、循环寿命、响应速度等方面存在显著差异。模型可以针对不同技术特性进行参数设置,评估不同技术在特定应用场景下的收益潜力。

3. 储能电价收益模型的应用与分析

构建的储能电价收益模型可以应用于多种场景,进行分析和评估:

3.1 投资决策支持

通过模型预测储能项目在生命周期内的总收益,并与投资成本进行对比,可以评估项目的经济可行性,计算投资回收期、内部收益率等指标,为投资方提供决策依据。在考虑不确定性的模型中,还可以进行风险评估,分析收益的波动范围。

3.2 运行策略优化

模型可以用于优化储能系统的充放电调度策略,使其在不同市场环境下实现收益最大化。例如,在分时电价差异较大的区域,模型可以确定最优的充放电时间和电量;在辅助服务市场活跃的区域,模型可以优化储能系统参与辅助服务的策略。

3.3 政策影响评估

政府部门在制定电价政策、辅助服务市场规则、储能补贴政策等时,可以利用储能电价收益模型评估不同政策对储能项目经济性的影响,从而制定更具激励性、更符合市场规律的政策,引导储能产业健康发展。

3.4 不同场景下的收益分析

可以利用模型分析储能系统在不同应用场景下的收益潜力,例如:

  • 电网侧储能:

     参与电网调度、辅助服务,平抑区域负荷波动,延缓电网升级。

  • 电源侧储能:

     与光伏、风电场配套建设,平滑出力曲线,提高可再生能源消纳能力。

  • 用户侧储能:

     结合分时电价套利,参与需求侧响应,提高用户用电灵活性。

通过对比分析,可以确定不同场景下最适合配置储能的技术类型和容量规模。

3.5 敏感性分析

对模型中的关键参数(如电价预测精度、电池效率、循环寿命、投资成本等)进行敏感性分析,可以了解这些参数变化对储能收益的影响程度,识别影响收益的关键因素,为风险管理和优化设计提供参考。

4. 案例分析(此处仅提供分析思路,实际案例需要具体数据进行仿真)

以某地区实施分时电价政策为例,考虑一个配置锂离子电池储能系统的用户侧储能项目。

  • 模型构建:

     建立基于分时电价套利的收益模型,考虑电池充放电效率、SOC约束、充放电功率限制。

  • 数据获取:

     收集该地区的历史分时电价数据、用户负荷数据、锂离子电池储能系统的技术参数(容量、功率、效率、循环寿命等)。

  • 运行策略:

     采用基于预测电价的优化调度策略,目标是实现每日电费最小化(或收益最大化)。

  • 仿真分析:

     利用历史数据进行仿真,计算储能系统在不同运行策略下的每日、每月、每年的电费节省(收益)。

  • 敏感性分析:

     分析电价峰谷差、电池效率、电池容量等参数变化对收益的影响。

  • 经济性评估:

     计算投资回收期、内部收益率等指标,评估项目的经济可行性。

通过案例分析,可以具体量化储能系统在该场景下的收益,验证模型的有效性,并为用户提供是否安装储能的决策支持。

5. 挑战与未来研究方向

尽管储能电价收益模型研究已取得一定进展,但仍面临一些挑战,未来研究方向包括:

  • 提高电价预测精度:

     特别是极端电价事件的预测,对储能收益影响较大。需要引入更先进的预测技术和更多维度的影响因素。

  • 完善辅助服务市场模型:

     不同地区的辅助服务市场规则差异较大,且在不断演变。需要深入研究不同市场的交易机制和收益结算方式,建立更精确的辅助服务收益模型。

  • 考虑储能系统与可再生能源的联合优化:

     研究如何将储能系统与光伏、风电等可再生能源发电系统进行联合优化运行,实现整体收益最大化和电网友好性。

  • 考虑储能系统对电网的影响:

     对于大型储能电站,其充放电行为会对局部电网产生影响,需要将电网约束更精确地融入模型中。

  • 考虑储能系统全生命周期成本与收益:

     更全面地考虑储能系统的投资成本、运行维护成本、退役成本以及不同阶段的收益,进行全生命周期的经济性评估。

  • 研究新型电力市场环境下的储能收益模式:

     随着电力市场改革的深入,现货市场、日前/实时市场、区域市场等新型市场不断发展,需要研究储能系统在这些新市场环境下的交易策略和收益模式。

  • 大数据与人工智能在储能电价收益模型中的应用:

     利用大数据分析历史运行数据和市场数据,采用人工智能算法优化预测模型、调度策略和风险管理。

结论

储能技术在构建新型电力系统中扮演着越来越重要的角色,其经济性是推动其大规模应用的关键。本文对考虑储能的电价收益模型进行了深入研究,探讨了多种收益来源、模型构建的关键要素、应用场景和挑战。构建准确、全面的电价收益模型对于指导储能项目的投资、运行优化和政策制定具有重要意义。

未来,随着电力市场和储能技术的不断发展,储能电价收益模型也将不断演进和完善。通过持续的研究和实践,将能够更准确地评估储能系统的经济价值,解锁其巨大的潜力,为构建清洁、高效、可靠的现代电力系统做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 王跃,李丹,董晓,等.基于Matlab自动代码生成的储能变流器研究[J].电力电子技术, 2014, 48(5):3.DOI:10.3969/j.issn.1000-100X.2014.05.001.

[2] 邱再森.储能规划及不同运行模式下经济性研究[D].郑州大学[2025-05-04].DOI:CNKI:CDMD:2.1018.109662.

[3] 刘燕华,张楠,张旭.考虑储能运行成本的风光储微网的经济运行[J].现代电力, 2013(5):6.DOI:10.3969/j.issn.1007-2322.2013.05.003.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值