【数据驱动】永磁同步电机PMSM和柔性负载PMSM数据驱动控制Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 永磁同步电机(PMSM)以其高效率、高功率密度和优良的控制性能在工业界得到广泛应用。然而,传统PMSM控制依赖于精确的电机模型参数,在面对电机参数时变、负载扰动以及复杂非线性特性等问题时表现出局限性。针对这一挑战,数据驱动控制策略应运而生。本文旨在探讨基于数据的PMSM及其柔性负载的控制方法,深入分析数据驱动控制的优势、挑战和关键技术,并展望其未来发展趋势,为提升PMSM控制系统的鲁棒性和适应性提供理论基础和实践指导。

引言:

在现代工业自动化领域,永磁同步电机(PMSM)凭借其突出的性能优势,已成为运动控制、伺服驱动、新能源汽车以及机器人等领域的核心动力源。传统的PMSM控制技术,如矢量控制(FOC)和直接转矩控制(DTC),依赖于精确的电机模型参数,并通过复杂的控制算法实现高性能控制。然而,这些方法存在固有的缺陷:

  • 模型依赖性: 电机参数的微小偏差,如定子电阻、电感以及永磁体磁链的变化,会导致控制性能的显著下降。

  • 参数辨识难度: 准确辨识电机参数需要耗费大量时间和精力,且难以应对电机运行过程中的参数时变性。

  • 复杂非线性: 电机运行过程中存在的各种非线性因素,如磁链饱和、齿槽效应以及反电动势谐波等,会影响控制精度。

  • 柔性负载挑战: 面对柔性负载,如机械臂、软体机器人等,由于其固有的振动特性,传统的PMSM控制方法难以保证系统的稳定性和快速响应。

因此,寻求一种不依赖于精确模型、能够自适应地应对参数时变和非线性特性的控制方法显得尤为重要。数据驱动控制作为一种新兴的控制范式,为解决上述问题提供了新的思路。

数据驱动控制的优势与挑战:

数据驱动控制是一种直接利用系统输入输出数据进行控制策略设计的控制方法,无需建立精确的系统模型。其核心思想是通过学习大量的运行数据,提取系统动态特性,并以此设计合适的控制器。数据驱动控制的优势主要体现在以下几个方面:

  • 模型无关性: 摆脱了对精确系统模型的依赖,适用于难以建立精确模型的复杂系统。

  • 自适应能力: 通过在线学习,能够自适应地应对系统参数时变、负载扰动以及环境变化等不确定因素。

  • 非线性处理能力: 可以有效地处理系统中的非线性特性,提高控制精度。

  • 易于实现: 许多数据驱动控制算法易于实现,可以快速应用于实际工程中。

然而,数据驱动控制也面临着诸多挑战:

  • 数据质量要求: 控制器的性能高度依赖于数据的质量,高质量的数据是保证控制性能的关键。

  • 数据量需求: 通常需要大量的运行数据才能训练出有效的控制器。

  • 算法复杂度: 一些数据驱动控制算法的计算复杂度较高,需要高性能的处理器支持。

  • 稳定性分析: 数据驱动控制系统的稳定性分析相对困难,需要进行严格的理论论证。

  • 泛化能力: 需要保证控制器在未见过的数据上的泛化能力,防止出现过拟合现象。

数据驱动PMSM控制的关键技术:

针对PMSM及其柔性负载的数据驱动控制,目前主要的研究方向和关键技术包括:

  • 基于神经网络的控制: 神经网络具有强大的非线性逼近能力,可以用于建立PMSM的动态模型,或者直接设计控制器。常见的神经网络控制方法包括反向传播神经网络(BPNN)、径向基函数神经网络(RBFNN)以及自适应模糊神经网络(ANFIS)等。神经网络可以学习PMSM的非线性特性,并实现对电机转速、电流等状态量的精确控制。对于柔性负载,可以将神经网络与自适应控制相结合,在线辨识负载的动态特性,并进行振动抑制。

  • 基于强化学习的控制: 强化学习(RL)是一种通过智能体与环境交互,学习最优策略的机器学习方法。在PMSM控制中,可以将电机及其负载作为环境,控制器作为智能体,通过不断试错,学习到最优的控制策略。强化学习可以有效地应对电机参数时变和负载扰动,并实现高性能控制。对于柔性负载,可以将振动抑制作为强化学习的目标之一,学习到能够有效抑制振动的控制策略。常见的强化学习算法包括Q-learning、SARSA以及深度强化学习(DRL)等。

  • 基于模型预测控制(MPC)的数据驱动方法: 模型预测控制是一种基于模型的优化控制方法。然而,在数据驱动的背景下,可以利用系统数据建立PMSM的预测模型,例如,利用高斯过程回归(GPR)或支持向量机(SVM)等方法建立非参数化的预测模型。然后,基于该模型进行滚动优化,实现对PMSM的控制。这种方法能够有效地利用数据,并实现高性能控制。对于柔性负载,可以将柔性结构的动态模型嵌入到预测模型中,并进行振动抑制优化。

  • 基于迭代学习控制(ILC)的数据驱动方法: 迭代学习控制是一种针对重复性运动控制的控制方法。在PMSM控制中,可以利用历史运行数据,通过迭代的方式不断优化控制信号,提高控制精度。对于柔性负载,可以利用迭代学习控制消除周期性的振动干扰,提高系统的鲁棒性。

  • 基于模糊逻辑的控制: 模糊逻辑控制是一种基于模糊集合理论和模糊推理的控制方法。它将人类的经验知识转化为模糊规则,并用于控制系统的设计。模糊逻辑控制具有鲁棒性强、易于实现等优点,适用于PMSM控制中存在的各种不确定性。对于柔性负载,可以将模糊逻辑控制与自适应控制相结合,在线调整控制参数,提高系统的稳定性和快速响应。

⛳️ 运行结果

🔗 参考文献

[1] 丁有爽,肖曦.永磁同步电机直接驱动柔性负载控制方法[J].电工技术学报, 2017, 32(4):10.DOI:CNKI:SUN:DGJS.0.2017-04-013.

[2] 黄全安,於锋,周陈辉,等.基于转速反馈增量补偿的永磁同步电机柔性负载谐振抑制方法[J].电机与控制应用, 2020, 47(5):6.DOI:CNKI:SUN:ZXXD.0.2020-05-001.

[3] 苏德淳.高速永磁同步电机设计与优化控制研究[D].安徽理工大学[2025-02-11].

📣 部分代码

function [dx] = LorenzFunction(t, x, parameter, u)GAMA = parameter(1); SIGMA = parameter(2);dx = [    -x(1)+x(2)*x(3)+u(1);    -x(2)-x(1)*x(3)+GAMA*x(3)+u(2);    SIGMA*(x(2)-x(3))+u(3);];end
🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值