【微电网】含分布式光伏的配电网集群划分和集群电压协调控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:随着能源转型的深入和分布式发电技术的快速发展,含分布式光伏(PV)的配电网面临着前所未有的挑战与机遇。大规模光伏接入虽然提升了能源利用效率,降低了碳排放,但也带来了电压波动、潮流反向、电网可靠性降低等问题。为了有效管理和控制这些问题,本文探讨了含分布式光伏的配电网集群划分方法,以及基于集群的电压协调控制策略。通过合理的集群划分,可以将复杂的大型配电网分解为多个相对独立的管理单元,简化控制复杂度,提升控制效率。在此基础上,构建了基于集群的电压协调控制框架,旨在实现集群内部和集群之间的电压稳定和功率优化,最终提高配电网的整体运行效益和可靠性。

引言

在全球气候变化日益严峻的背景下,可再生能源的开发利用成为了必然趋势。光伏发电作为一种清洁、高效的能源形式,在全球范围内得到了广泛的应用。然而,大规模分布式光伏接入配电网,对传统的配电网规划、运行和控制方式提出了新的挑战。光伏发电具有间歇性、随机性和波动性的特点,导致配电网电压波动加剧,潮流方向改变,甚至引发电压越限、线路过载等问题。此外,大量光伏并网也增加了配电网的故障概率,降低了供电可靠性。

针对上述问题,国内外学者和工程技术人员进行了大量的研究和实践。其中,配电网集群划分和集群电压协调控制是解决大规模分布式光伏并网问题的有效途径。集群划分可以将复杂的配电网分解为多个相对独立的控制单元,便于集中管理和控制。集群电压协调控制则是在集群划分的基础上,通过协调各个集群的电压和功率,实现配电网电压稳定和功率优化,提高电网的运行效益和可靠性。

配电网集群划分方法

合理的集群划分是实现集群电压协调控制的前提。集群划分的原则应兼顾电网结构、分布式光伏的接入位置和容量、负荷特性、以及控制需求等因素。常用的集群划分方法主要包括以下几种:

  • 基于电网拓扑结构的划分方法: 该方法主要考虑配电网的物理结构和联络开关的位置。通常将具有明显物理边界的区域划分为一个集群,例如以变电站为中心的区域,或者以联络开关分隔的区域。这种方法的优点是简单易行,便于实施,但可能忽略了光伏接入和负荷分布的影响。

  • 基于光伏渗透率的划分方法: 该方法主要考虑分布式光伏的接入容量和渗透率。将光伏渗透率相近的区域划分为一个集群,可以更有效地管理和控制光伏发电对电压的影响。这种方法可以根据光伏渗透率的变化动态调整集群划分,具有一定的灵活性。

  • 基于电压敏感性的划分方法: 该方法通过分析配电网中各个节点对光伏发电的电压敏感性,将电压敏感性相近的节点划分为一个集群。这种方法可以有效地控制电压波动,提高电压稳定性,但需要对电网进行大量的电压敏感性分析。

  • 基于多目标优化的划分方法: 针对以上单一划分方法的局限性,研究者提出了基于多目标优化的集群划分方法。该方法综合考虑电网拓扑结构、光伏渗透率、电压敏感性、以及控制目标等因素,建立多目标优化模型,通过优化算法求解最佳的集群划分方案。例如,可以将集群内部电压偏差最小化、集群之间的联络线潮流最小化、以及集群内部控制资源最大化作为优化目标。

在实际应用中,需要根据具体的配电网结构、光伏接入情况和控制需求,选择合适的集群划分方法。通常可以将多种方法结合使用,以获得更优的划分效果。

基于集群的电压协调控制策略

在完成配电网集群划分后,需要构建基于集群的电压协调控制策略,以实现集群内部和集群之间的电压稳定和功率优化。电压协调控制策略主要包括以下几个方面:

  • 集群内部电压控制: 集群内部电压控制主要通过调节分布式电源的功率输出、控制有载调压变压器(OLTC)的分接头、以及调节电容器组的投切等方式,实现集群内部的电压稳定。对于含光伏的集群,可以通过控制光伏逆变器的无功功率输出,来实现电压支撑。此外,还可以采用主动配电网技术,例如电压调节器(VR)和静态同步补偿器(STATCOM)等,来提高电压稳定性。

  • 集群间电压协调控制: 集群间电压协调控制主要通过协调各个集群之间的功率交换,实现整个配电网的电压稳定。常用的协调控制方法包括集中式控制、分散式控制和混合式控制。集中式控制需要中央控制器收集所有集群的信息,进行全局优化,然后将控制指令下发给各个集群。分散式控制则由各个集群根据自身的信息和邻近集群的信息,自主决策控制策略。混合式控制则结合了集中式控制和分散式控制的优点,通过中央控制器进行宏观协调,由各个集群进行局部优化。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值