✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
机器人动力学建模是机器人控制与规划的基础。然而,传统的动力学模型通常基于牛顿-欧拉方程或拉格朗日方程,这些方法在处理复杂机器人系统或存在高度非线性摩擦、齿轮间隙等因素时,往往难以建立精确的模型。此外,参数辨识过程通常需要大量的实验数据和复杂的优化算法,效率较低。近年来,Koopman理论为解决上述问题提供了一个崭新的视角。该理论的核心思想是将非线性动力系统提升到一个高维线性空间中进行分析,从而简化系统建模和控制的设计。本文将深入探讨如何利用Koopman理论进行机器人动力学的非线性系统辨识,并分析其优势与挑战。
Koopman理论起源于1931年,由美国数学家Bernard Koopman提出。该理论认为,尽管动力系统本身可能是非线性的,但通过选择合适的观测函数(Observable),可以将系统状态空间的演化映射到一个更高维度的函数空间,并在该空间中找到一个线性算子(Koopman算子)来描述观测函数的演化。因此,非线性动力系统的演化可以被线性化描述,从而简化分析和预测。
将Koopman理论应用于机器人动力学系统辨识,可以概括为以下几个关键步骤:
-
数据采集: 首先,需要采集机器人系统在不同工况下的运动数据,包括关节角度、角速度、角加速度等。这些数据将作为后续模型训练的基础。数据质量至关重要,噪声和误差会对辨识结果产生显著影响,因此需要采用高精度传感器和有效的滤波方法来保证数据的准确性。
-
观测函数选择: 这是Koopman理论应用的关键一步。观测函数将原始状态空间映射到高维函数空间,其选择直接影响到Koopman算子学习的效率和精度。常见的观测函数包括多项式函数、径向基函数(RBF)、神经网络等。对于机器人动力学系统,可以考虑将关节角度、角速度、角加速度以及其组合作为观测函数。此外,物理先验知识,例如能量守恒定律等,也可以用于指导观测函数的选择,从而提高模型的物理可解释性。
-
Koopman算子学习: 在选择了观测函数后,需要根据采集到的数据学习Koopman算子。常用的学习方法包括基于扩展动态模式分解(Extended Dynamic Mode Decomposition, EDMD)的方法。EDMD通过构建一个数据矩阵,并求解一个线性回归问题来逼近Koopman算子。此外,深度学习方法也逐渐被应用于Koopman算子的学习,例如基于自编码器的Koopman网络,能够自动学习合适的观测函数和Koopman算子。
-
模型验证与改进: 学习得到的Koopman模型需要通过验证数据进行评估。常见的评估指标包括预测误差、长期预测能力等。如果模型性能不满足要求,可以尝试调整观测函数的选择、增加训练数据量、或者改进Koopman算子的学习方法。
相较于传统的机器人动力学建模方法,基于Koopman理论的非线性系统辨识方法具有以下显著优势:
-
线性化框架: Koopman理论将非线性动力系统转化为线性系统,简化了系统分析和控制设计。线性化后的系统更容易进行稳定性分析、优化控制等,并可以应用已有的线性控制理论进行设计。
-
数据驱动: Koopman理论是一种数据驱动的方法,不需要对系统的内部物理机制进行深入了解。只需要通过采集到的数据进行学习,即可建立系统的动力学模型。这对于复杂机器人系统或存在未知扰动的系统尤为重要。
-
非参数化建模: Koopman理论本质上是一种非参数化建模方法,不需要预先假设模型的形式。这使得它能够更好地适应各种复杂的非线性动力系统。
-
全局有效性: 传统的线性化方法通常只能在平衡点附近有效,而Koopman理论的线性化是在高维函数空间中进行的,具有更强的全局有效性。
然而,将Koopman理论应用于机器人动力学系统辨识也面临着一些挑战:
-
观测函数选择: 合适的观测函数选择是Koopman理论应用的关键。如果观测函数选择不当,可能会导致Koopman算子学习困难,或者模型的预测精度不高。如何根据具体的机器人系统特性选择合适的观测函数仍然是一个开放问题。
-
维度灾难: 由于观测函数将原始状态空间映射到高维函数空间,因此Koopman算子的维度可能会非常高,导致计算复杂度增加,甚至出现维度灾难。如何有效地降低Koopman算子的维度,提高计算效率是需要解决的关键问题。例如,可以采用降维技术,如主成分分析(PCA)或稀疏表示,对观测函数进行降维。
-
长期预测精度: 尽管Koopman理论可以将非线性动力系统线性化,但在长期预测时,仍然可能会出现误差累积,导致预测精度下降。如何提高Koopman模型的长期预测精度,例如通过引入误差补偿机制,是一个重要的研究方向。
-
物理可解释性: 尽管Koopman理论具有强大的建模能力,但其模型通常缺乏物理可解释性。如何将物理先验知识融入到Koopman模型中,提高模型的可解释性,是当前研究的一个热点。
未来,基于Koopman理论的机器人动力学非线性系统辨识方法具有广阔的应用前景。例如,可以应用于:
-
自适应控制: 利用Koopman模型进行实时系统辨识,并根据辨识结果调整控制参数,实现自适应控制。
-
故障诊断: 通过比较Koopman模型的预测结果和实际测量值,可以检测出机器人系统的故障。
-
运动规划: 利用Koopman模型进行运动规划,可以提高规划效率和轨迹精度。
-
协作机器人: Koopman理论可以用于建模协作机器人的动力学,从而实现更安全、更高效的协作。
⛳️ 运行结果
🔗 参考文献
[1] 许陈莹.含双馈风机并网电力系统的暂态稳定运行域估计研究[D].华南理工大学,2023.
[2] 孟艳丽,王素秋,韩晶.基于Matlab的非线性动力学系统分析[J].物理实验, 2005, 25(8):4.DOI:10.3969/j.issn.1005-4642.2005.08.012.
[3] 郭晓彬.Delta并联机器人运动规划与动力学控制[D].广东工业大学,2015.DOI:10.7666/d.Y2795766.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇