Transformer 跨界物理建模:探索模拟动态物理系统方法与实践(PINN、流体力学、有限元)

在这里插入图片描述

项目概述

transformer-physx 是一个由 Nicholas Zabaras 团队开发的开源项目,托管于 GitHub,旨在将 Transformer 模型(最初在自然语言处理领域大获成功)应用于物理系统的建模与预测。该项目基于论文 ​*“Transformers for Modeling Physical Systems”*​(Neural Networks, 2022),探索了深度学习中的 Transformer 架构如何通过自注意力机制和 Koopman 嵌入来模拟动态物理系统。项目采用 Python 开发,遵循 Hugging Face 的模型库设计理念,提供了一个易于使用的工具包,目标是让科学计算和机器学习社区能够更方便地利用 Transformer 的能力。

其核心创新在于将 Transformer 的长序列依赖建模能力迁移到物理领域,用于预测如流体力学、化学反应扩散和混沌系统等动态行为。项目提供了预训练模型、数据集和示例代码,支持研究人员快速上手并扩展应用。


研究方法

1. Transformer 在物理系统中的适用性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值