✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
光伏发电作为重要的可再生能源形式,其效率的提升和稳定运行是技术研究和应用的关键。在光伏发电系统中,最大功率点跟踪(MPPT)和恒功率控制(恒功率控制)是两种核心的运行策略。MPPT旨在追踪光伏阵列在不同环境条件下的最大功率输出点,从而最大化发电量。而恒功率控制则是在某些特定场景下,为了满足电网调度需求或系统安全稳定运行的考量,将光伏系统的输出功率限制在设定的恒定值。光伏系统MPPT与恒功率控制之间的切换策略,是确保系统高效、灵活运行的关键技术之一,其设计和实现直接影响到发电收益、电网友好性以及系统可靠性。
光伏阵列的输出特性受到太阳辐照强度和环境温度的显著影响,表现为一条带有唯一最大功率点的非线性伏安(V-I)和功率-电压(P-V)曲线。MPPT控制器的核心任务便是实时监测光伏阵列的输出电压和电流,并通过调节逆变器的直流侧工作点,使得阵列始终工作在最大功率点(MPP)附近。常见的MPPT算法包括扰动观察法(Perturb and Observe, P&O)、增量电导法(Incremental Conductance, InCond)等。这些算法通过不断微调工作电压,观察功率变化趋势,从而逼近和锁定MPP。高效的MPPT算法能够显著提高光伏系统的能量转换效率,尤其在辐照强度和温度变化频繁的环境下,其重要性更为凸显。
然而,在实际的光伏系统运行中,并非所有时刻都需要最大化发电量。例如,在电力系统负荷较低时,为了避免对电网造成冲击或引发频率波动,需要限制光伏电站的出力。此外,一些分布式光伏系统可能需要与储能系统协同工作,以满足特定的用电负荷需求,此时也需要进行功率限制。在这些场景下,恒功率控制便应运而生。恒功率控制的目标是使光伏系统的输出功率维持在预设的恒定值。这通常通过逆变器对直流侧电压或电流进行调节来实现。当MPPT算法追踪到的最大功率点输出超过恒功率设定值时,系统会切换到恒功率模式,将输出功率限制在设定值。
MPPT与恒功率控制之间的切换,是一个需要精心设计的过程。直接的、硬性的切换可能导致功率波动,对逆变器和电网造成不利影响。因此,切换策略的设计需要考虑到平滑性、响应速度以及鲁棒性。
一种常见的切换策略是基于功率阈值或控制模式指令。当MPPT算法追踪到的最大功率值高于设定的恒功率阈值时,系统从MPPT模式切换到恒功率模式。反之,当恒功率模式下,光伏阵列的理论最大功率下降到恒功率设定值以下时,系统则切换回MPPT模式,以充分利用光伏资源。这种基于功率阈值的切换方式相对简单直观,易于实现。但需要注意的是,在切换点附近,由于存在功率波动,可能需要引入一定的死区或迟滞,以避免频繁的模式切换。
另一种更精细的切换策略是基于控制算法的无缝切换。这种方法旨在在两种控制模式之间实现平稳过渡,最小化功率波动。例如,可以通过状态机的方式来管理MPPT和恒功率两种控制模式。当满足切换条件时,系统会进入一个过渡状态,在此状态下,控制算法可能会进行平滑的参数调整,或者采用混合控制策略,逐步从一种模式过渡到另一种模式。例如,在从MPPT切换到恒功率时,可以逐渐增加直流侧电压,以降低输出功率,直到达到设定值。在从恒功率切换到MPPT时,则可以逐渐降低直流侧电压,使系统重新回到MPP附近。
除了基于功率阈值和无缝切换策略,还可以结合外部控制指令进行模式切换。例如,电网调度中心可以通过通信接口向光伏电站发送控制指令,要求其进行恒功率输出。在这种情况下,系统的控制模式将根据外部指令进行优先级较高的切换。这对于提高电网的可控性和稳定性至关重要。
在实际系统中,MPPT和恒功率控制切换的实现还面临一些挑战。首先,精确地估计光伏阵列的理论最大功率是实现有效切换的关键。受环境因素影响,精确的功率估计具有一定的难度。其次,切换过程中的动态响应和稳定性需要充分考虑。不当的切换策略可能导致功率振荡,甚至影响系统的长期运行可靠性。此外,对于大规模光伏电站,集中式控制和分布式控制下的切换策略也存在差异,需要根据具体情况进行优化设计。
为了提高切换的平滑性和鲁棒性,可以引入一些先进的控制技术。例如,基于模型预测控制(Model Predictive Control, MPC)的方法可以根据系统的动态模型,预测未来的功率输出,并规划最优的切换路径。此外,采用模糊逻辑控制或神经网络等智能算法,可以更好地处理不确定性,实现更智能化的模式切换。
⛳️ 运行结果
🔗 参考文献
[1] 李洁,刘蕴达.光伏电池和MPPT控制器的仿真模型[J].电源技术, 2012, 36(12):4.DOI:10.3969/j.issn.1002-087X.2012.12.021.
[2] 刘翼.荆龙,童亦斌.基于Simulink的光伏电池组件建模和MPPT仿真研究[J].科技导报, 2010(18):4.DOI:CNKI:SUN:KJDB.0.2010-18-031.
[3] 司传涛,周林,张有玉,等.光伏阵列输出特性与MPPT控制仿真研究[J].华东电力, 2010(2):5.DOI:CNKI:SUN:HDDL.0.2010-02-036.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇