基于虚拟阻抗的下垂控制——孤岛双机并联附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着分布式电源(DER)的广泛应用,微电网作为连接分布式电源与传统电网的关键节点,其控制策略的研究变得日益重要。在微电网的孤岛运行模式下,多个逆变器并联运行以共同为本地负荷供电,此时如何实现逆变器之间的稳定并联运行、功率合理分配以及电压频率稳定是亟待解决的问题。传统的并联控制方法如主从控制、集中控制等存在单点故障风险高、通信依赖性强、可扩展性差等缺点。基于下垂控制(Droop Control)因其去中心化、无需通信、即插即用等优点,成为孤岛微电网逆变器并联控制的主流方法之一。然而,传统的基于电阻下垂(R-droop)和感抗下垂(L-droop)的控制策略在不同的电网阻抗特性下存在局限性。特别是在孤岛微电网中,电缆阻抗特性复杂,R/X比例各异,使得传统下垂控制难以实现最优的功率分配和电压调节性能。

为克服传统下垂控制的不足,基于虚拟阻抗的下垂控制应运而生。通过在控制算法中引入虚拟电阻、虚拟电感或虚拟阻抗,可以有效地改变逆变器的等效输出阻抗特性,从而改善功率分配精度、增强系统稳定性以及提升对不同电网阻抗的适应性。本文将深入探讨基于虚拟阻抗的下垂控制在孤岛双机并联场景下的应用,分析其基本原理、控制策略、优势以及面临的挑战,并展望其未来的发展方向。

一、孤岛双机并联控制的需求与挑战

在孤岛微电网中,两台或多台逆变器并联运行时,主要面临以下需求和挑战:

  1. 功率的精确分配:

    理想情况下,并联逆变器应根据其容量或预设的功率分配比例来共同承担负荷功率,避免某些逆变器过载而其他逆变器轻载,从而提高整体运行效率和可靠性。

  2. 电压和频率的稳定:

    孤岛运行模式下,微电网的电压和频率不再由大电网支撑,而是由并联逆变器共同维持。因此,控制系统必须能够有效地抑制电压和频率波动,保持其稳定运行在额定范围内。

  3. 环流抑制:

    并联逆变器输出电压之间的微小差异以及线路阻抗不匹配容易导致逆变器之间产生环流,这不仅会增加损耗、降低效率,还可能导致保护误动作甚至系统不稳定。

  4. 即插即用与可扩展性:

    微电网的运行环境复杂多变,分布式电源可能随时接入或切出。控制系统应具备良好的即插即用性能,无需复杂的配置即可实现新设备的并网,同时方便系统的扩展。

  5. 通信依赖性低:

    复杂的通信网络不仅增加了成本,也增加了系统的故障风险。理想的控制策略应尽量减少对通信的依赖,实现去中心化控制。

二、基于下垂控制的基本原理

下垂控制的核心思想是通过调节逆变器的输出频率和电压幅值来模拟同步发电机的调速器和励磁系统特性。其基本原理是利用逆变器输出有功功率与频率、无功功率与电压幅值之间的下垂特性,实现不同逆变器之间的功率分配和系统稳态运行。

然而,传统下垂控制的性能在很大程度上依赖于输出阻抗的特性。在以电感为主的电网中,频率主要由有功功率决定,电压主要由无功功率决定,传统的P-ωω和Q-V下垂控制能够取得较好的效果。但在电阻占主导地位的电网中,有功功率和无功功率与频率和电压之间的耦合关系发生变化,导致传统的P-ωω和Q-V下垂控制效果变差,甚至可能引起功率振荡和分配不均。

三、基于虚拟阻抗的下垂控制

为了克服传统下垂控制对电网阻抗特性的敏感性,基于虚拟阻抗的下垂控制应运而生。其核心思想是通过在控制算法中引入虚拟阻抗,改变逆变器对外的等效输出阻抗特性,从而优化功率分配和系统稳定性。

3.1 虚拟阻抗的引入

虚拟阻抗通常在逆变器的输出电流控制环中引入。通过在电流指令或电压指令中叠加一个与输出电流或电压相关的量,可以模拟一个额外的阻抗压降,从而改变逆变器的输出特性。

常见的虚拟阻抗形式包括:

  • 虚拟电阻 (RvRv):

    通过在电压指令中减去一个与输出电流实部(或dq轴d轴电流)相关的量来模拟。

  • 虚拟电感 (LvLv):

    通过在电压指令中减去一个与输出电流虚部(或dq轴q轴电流)相关的量来模拟。

  • 虚拟阻抗 (ZvZv):

    更一般地,可以引入一个虚拟复阻抗,通过在电压指令中减去一个与输出电流矢量相关的量来模拟。

3.2 基于虚拟阻抗的下垂控制策略

将虚拟阻抗与传统下垂控制相结合,可以形成多种基于虚拟阻抗的下垂控制策略。以下介绍几种典型的策略:

  • 基于虚拟电阻的下垂控制:

    • 目的:

      主要用于改善在电阻占主导地位的电网中的功率分配精度。

    • 原理:

      在电压指令中引入一个与输出电流实部成比例的虚拟电阻压降。这样可以使得逆变器对外的等效阻抗R/X比例增加,从而增强有功功率与频率的解耦,改善有功功率的分配。

    • 控制结构:

      通常在传统下垂控制器的基础上,在电压指令生成环节加入虚拟电阻的压降项。

  • 基于虚拟电感的下垂控制:

    • 目的:

      主要用于模拟在电感占主导地位的电网中的特性,增强无功功率与电压的解耦,改善无功功率的分配和环流抑制。

    • 原理:

      在电压指令中引入一个与输出电流虚部成比例的虚拟电感压降。这样可以使得逆变器对外的等效阻抗R/X比例降低,模拟感性线路的特性。

    • 控制结构:

      与基于虚拟电阻类似,在电压指令生成环节加入虚拟电感的压降项。

  • 基于虚拟复阻抗的下垂控制:

  • 目的:

    更加灵活地调整逆变器的等效输出阻抗特性,以适应不同R/X比例的电网环境,实现更优的功率分配和系统稳定性。

3.3 虚拟阻抗的选取与调节

虚拟阻抗的选取对控制性能至关重要。合适的虚拟阻抗可以改善功率分配和系统稳定性,而不当的选取可能导致性能恶化甚至系统不稳定。

  • 虚拟电阻的选取:

    主要影响有功功率的分配精度。在电阻占主导的电网中,适当增加虚拟电阻可以有效解耦有功功率与频率。

  • 虚拟电感的选取:

    主要影响无功功率的分配精度和环流抑制。适当增加虚拟电感可以模拟感性线路特性,改善无功功率分配和环流。

  • 虚拟阻抗的动态调节:

    为了进一步提升系统的适应性和动态性能,可以考虑根据电网的实际情况(如负荷变化、线路阻抗变化等)对虚拟阻抗进行动态调节。例如,可以根据输出功率、电压偏差或电流环流等信息,通过自适应算法或模糊控制等方法来调整虚拟阻抗的值。

四、基于虚拟阻抗的下垂控制在孤岛双机并联中的应用

在孤岛双机并联场景下,基于虚拟阻抗的下垂控制可以有效地解决传统下垂控制面临的挑战。具体应用如下:

  1. 改善功率分配精度:通过引入合适的虚拟阻抗,可以有效地改变逆变器对外的等效阻抗特性。例如,在电阻性线路为主的环境下,引入虚拟电阻可以增强有功功率与频率的解耦,使得有功功率分配更加准确;引入虚拟电感则可以增强无功功率与电压的解耦,改善无功功率的分配和抑制环流。通过合理选择虚拟阻抗的R/X比例,可以使得并联逆变器更有效地根据下垂系数进行功率分配。

  2. 抑制环流:并联逆变器之间的电压差异是导致环流的主要原因之一。通过引入虚拟阻抗,可以在一定程度上抑制环流。例如,引入虚拟电感可以在一定程度上增加系统对环流的阻抗,从而抑制环流的幅值。同时,精确的功率分配也可以减小逆变器之间的电压差异,从而间接抑制环流。

  3. 增强系统稳定性:虚拟阻抗的引入会影响系统的动态特性。通过合理设计虚拟阻抗的值和控制参数,可以改善系统的阻尼特性,抑制功率振荡,提高系统的动态响应速度和稳定性。

  4. 提升对线路阻抗的适应性:孤岛微电网的线路阻抗可能因敷设环境、电缆类型等因素而有较大的差异,R/X比例也可能不同。基于虚拟阻抗的下垂控制可以通过调节虚拟阻抗来补偿实际线路阻抗的影响,使得下垂控制在高R/X比例和低R/X比例的电网中都能取得较好的性能。

五、孤岛双机并联的控制结构

基于虚拟阻抗的下垂控制在孤岛双机并联中的典型控制结构如下所示(以一台逆变器为例):

[此处应包含一个孤岛双机并联逆变器控制框图的描述。由于文本格式限制,无法直接插入图片。请自行想象一个包含以下关键模块的框图:]

  • 外环:

    下垂控制模块(P-ωω下垂和Q-V下垂),根据逆变器的输出有功功率和无功功率计算得到频率和电压幅值的参考值。

  • 频率与电压参考生成模块:

    根据下垂控制器的输出,生成瞬时电压参考值(包括幅值和相位)。

  • 虚拟阻抗模块:

    根据逆变器的输出电流和预设的虚拟阻抗值,计算虚拟阻抗压降。

  • 电压指令生成模块:

    将频率与电压参考生成模块输出的电压参考与虚拟阻抗模块输出的虚拟压降叠加,得到最终的电压指令。

  • 内环:

    电压环和电流环。通常采用双闭环控制结构,以提高控制精度和动态响应速度。电流环通常在dq旋转坐标系下实现。

  • PWM调制模块:

    根据内环控制器输出的调制信号,生成驱动电力电子开关器件的PWM信号。

  • 逆变器硬件:

    包括DC/AC逆变器、输出滤波器等。

在双机并联系统中,两台逆变器都采用类似的控制结构,并且独立运行,通过下垂控制实现功率的去中心化分配。

六、基于虚拟阻抗下垂控制的优势与挑战

优势:

  • 改善功率分配精度:

    有效克服传统下垂控制在不同R/X比例电网下的功率分配难题。

  • 增强系统稳定性:

    合理的虚拟阻抗设计可以改善系统阻尼,抑制功率振荡。

  • 提高对线路阻抗的适应性:

    通过调节虚拟阻抗来补偿实际线路阻抗的影响。

  • 抑制环流:

    在一定程度上抑制并联逆变器之间的环流。

  • 保持下垂控制的优点:

    继承了下垂控制去中心化、无需通信、即插即用等优点。

挑战:

  • 虚拟阻抗的选取与优化:

    合适的虚拟阻抗值对性能至关重要,如何根据系统状态、线路阻抗等因素进行最优选取或动态调节是一个挑战。不当的虚拟阻抗可能导致性能恶化甚至系统不稳定。

  • 对动态响应的影响:

    虚拟阻抗的引入可能会影响系统的动态响应速度和瞬态性能。需要在功率分配精度、稳态稳定性与动态响应之间进行权衡。

  • 与内环控制的协调:

    虚拟阻抗通常在外环与内环之间引入,需要考虑其对内环控制性能的影响,并进行协调设计。

  • 硬件实现和计算复杂度:

    特别是动态调节虚拟阻抗的策略,可能增加控制算法的计算复杂度,对控制器的硬件性能提出要求。

  • 保护与故障穿越能力:

    虚拟阻抗的引入可能会改变逆变器的输出特性,需要在故障条件下考虑其对保护策略和故障穿越能力的影响。

七、未来发展方向

基于虚拟阻抗的下垂控制在孤岛微电网逆变器并联控制中展现出巨大的潜力,未来的研究方向可以包括:

  • 自适应虚拟阻抗控制:

    开发能够根据系统运行状态(如负荷变化、线路阻抗变化、逆变器接入/切出等)自适应调节虚拟阻抗值的算法,以实现更优的控制性能。

  • 多目标优化虚拟阻抗设计:

    在功率分配精度、电压频率稳定、环流抑制和动态响应等多个性能指标之间进行综合优化,设计最优的虚拟阻抗。

  • 基于人工智能的虚拟阻抗控制:

    利用机器学习、神经网络等人工智能技术,通过数据驱动的方式学习和预测最优的虚拟阻抗值,以提高控制的智能化水平。

  • 考虑电网拓扑变化的虚拟阻抗控制:

    研究在微电网拓扑结构发生变化(如线路故障、开关操作等)时,如何快速有效地调整虚拟阻抗以维持系统稳定运行。

  • 与其他控制策略的融合:

    将基于虚拟阻抗的下垂控制与其他先进控制策略(如一致性控制、最优控制等)相结合,以进一步提升微电网的整体控制性能。

  • 硬件在环和实验验证:

    开展更加深入的硬件在环仿真和实际实验验证,检验不同虚拟阻抗策略在真实系统中的性能表现。

结论

基于虚拟阻抗的下垂控制为解决孤岛微电网逆变器并联控制中的功率分配不均、环流和对线路阻抗敏感等问题提供了有效的途径。通过在控制算法中引入虚拟阻抗,可以灵活地改变逆变器的等效输出特性,从而改善功率分配精度、抑制环流、增强系统稳定性并提高对不同电网阻抗的适应性。尽管在虚拟阻抗的选取、优化和动态调节等方面仍存在挑战,但随着相关技术的不断发展,基于虚拟阻抗的下垂控制有望在未来的微电网建设中发挥越来越重要的作用,为构建稳定、高效、可靠的智能微电网提供关键技术支撑。孤岛双机并联作为微电网中最基本的并联场景,对其深入研究为多机并联奠定了基础,而基于虚拟阻抗的下垂控制无疑是提升其性能的关键技术之一。

⛳️ 运行结果

🔗 参考文献

[1] 梁量.分布式VSC动态虚拟阻抗优化并联策略研究[D].哈尔滨工业大学,2011.DOI:10.7666/d.D260329.

[2] 穆晓燕.微网逆变器的虚拟同步发电机控制策略研究[D].中国矿业大学,2023.

[3] 邹赵悦,吴超,王勇,等.基于等效同步功率的孤岛并联构网变流器系统暂态稳定性分析[J].电力系统自动化, 2024, 48(2):140-150.DOI:10.7500/AEPS20230518011.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值