【非欧几里得域信号的信号处理】使用经典信号处理和图信号处理在一维和二维欧几里得域信号上应用低通滤波器研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在信号处理领域,低通滤波器是去除高频噪声、平滑信号的关键工具。传统上,低通滤波的研究与应用主要集中在欧几里得域信号,如一维时间序列或二维图像。然而,现实世界中存在大量非欧几里得域信号,其内在结构并非简单的网格排列,而是更复杂的图结构。本文旨在探讨在欧几里得域信号上,使用经典信号处理方法(如傅里叶分析)与图信号处理方法(基于图拉普拉斯算子)应用低通滤波器的异同。通过在一维和二维欧几里得信号上进行实验,我们将比较两种方法在滤波效果、计算复杂度和对信号结构的利用方面的差异,为理解和未来拓展非欧几里得域信号处理奠定基础。

引言

信号处理的本质是分析、操作和变换信号,以提取有用的信息或去除不必要的部分。低通滤波作为信号处理中的基本操作,旨在保留信号的低频分量,抑制高频分量。在高频噪声的存在下,低通滤波可以有效地提高信号的信噪比,使得后续的分析更加准确。

在经典的信号处理理论中,欧几里得域信号是最常见的处理对象。一维时间序列可以看作是定义在实数轴上的函数,二维图像可以看作是定义在二维平面上的函数。傅里叶分析是处理欧几里得域信号的强大工具,它将信号分解为不同频率的正弦和余弦波的叠加。低通滤波器在频域上表现为对高频分量的衰减,在时域或空域上则表现为与一个低通滤波器的脉冲响应进行卷积。

然而,许多现实世界的信号并非如此规则。例如,社交网络中的节点信息、传感器网络中的数据、蛋白质相互作用网络等,其内在结构更适合用图来描述。在这种图结构下,信号不再是定义在规则网格上的函数,而是定义在图的顶点上的值。这类信号被称为图信号,它们属于非欧几里得域信号的范畴。

随着对非欧几里得域信号处理需求的日益增长,图信号处理(Graph Signal Processing, GSP)应运而生。GSP借鉴了经典信号处理的许多概念,并将其推广到图结构上。图傅里叶变换(Graph Fourier Transform, GFT)是GSP的核心概念之一,它利用图拉普拉斯算子的特征向量作为基函数,将图信号分解到图谱域。在图谱域中,可以定义图上的频率概念,进而设计图滤波器,例如图低通滤波器。

本文将聚焦于在欧几里得域信号上应用低通滤波器,但通过比较经典信号处理和图信号处理的方法来研究其异同。尽管欧几里得域信号可以直接用经典方法处理,但将其视为具有特殊结构的图,并应用图信号处理方法,可以帮助我们更深入地理解图信号处理的原理,并为未来处理更复杂的非欧几里得域信号积累经验。具体而言,我们将在一维时间和二维图像信号上,分别使用基于傅里叶分析的经典低通滤波器和基于图拉普拉斯算子的图低通滤波器进行实验,并分析它们的性能差异。

经典信号处理中的低通滤波器
在二维频域中,低通滤波器通常表现为一个在原点附近保持增益,在远离原点区域衰减增益的二维函数。二维低通滤波在空域上同样可以表示为图像与二维滤波器脉冲响应的卷积。常见的二维低通滤波器包括均值滤波器和高斯滤波器,它们在空域上执行局部平均操作,从而平滑图像并去除高频噪声。

经典信号处理中低通滤波器的设计和实现方法成熟,理论完备,是处理欧几里得域信号的基石。然而,这些方法严重依赖于信号的欧几里得结构,难以直接推广到非欧几里得域信号。

与此同时,我们可以使用经典的傅里叶分析方法对同一维信号进行低通滤波。通过计算信号的DFT,在频域乘以低通滤波器响应,然后进行IDFT得到滤波后的信号。

比较两种方法:

  • 经典方法:

     直接利用信号的周期性和傅里叶级数/变换的理论,频域概念清晰,滤波器设计和实现成熟。计算效率通常较高,特别是对于规则采样信号。

  • 图信号处理方法:

     将一维信号视为图信号,依赖于图的结构和图拉普拉斯算子的谱性质。滤波效果与图的连接方式密切相关。计算图拉普拉斯算子及其特征分解可能带来额外的计算开销。

实验中,我们可以生成一个带有高频噪声的一维信号,然后分别使用经典方法和图信号处理方法进行低通滤波,比较滤波后的信号波形、信噪比以及计算时间。理论上,对于一维欧几里得信号,链状图的图拉普拉斯算子与有限差分算子密切相关,其特征向量与离散傅里叶变换的基函数在一定程度上存在联系。因此,在理想情况下,两种方法的滤波效果可能非常接近。但实际实现中的数值计算、边界处理以及图结构选择等因素会影响结果。

在二维欧几里得信号上应用两种低通滤波器

对于二维图像信号,我们可以将其视为定义在一个二维网格图上的图信号。图的顶点对应于图像的像素,顶点之间的连接可以基于像素的邻接关系,例如四邻域或八邻域连接。基于这样的网格图,我们可以构建图拉普拉斯算子,并进行图信号处理。将图像像素值视为图信号,进行GFT,在图谱域设计图低通滤波器,然后进行IGFT得到滤波后的图像。

与一维情况类似,我们可以使用经典的二维傅里叶分析方法对图像进行低通滤波。计算图像的二维DFT,在二维频域乘以低通滤波器响应,然后进行二维IDFT。或者在空域上使用卷积核进行滤波,例如使用高斯核进行卷积。

比较两种方法:

  • 经典方法:

     利用图像的二维欧几里得结构和二维傅里叶变换理论,二维频域概念清晰,滤波器设计和实现成熟。高斯滤波器等空域卷积方法计算效率高,易于实现。

  • 图信号处理方法:

     将图像视为网格图上的信号,依赖于图的结构和图拉普拉斯算子的谱性质。图结构的选择(四邻域或八邻域)会影响图拉普拉斯算子和滤波效果。对于大规模图像,计算图拉普拉斯算子的特征分解计算量巨大。

实验中,我们可以对一个带有高斯噪声或椒盐噪声的图像进行低通滤波。分别使用经典的二维高斯滤波器和基于网格图的图低通滤波器进行处理,比较滤波后图像的视觉效果(平滑程度、噪声去除)、峰值信噪比(PSNR)以及计算时间。在图像处理中,经典的低通滤波器,特别是空域卷积方法,由于其计算效率和成熟性,仍然是主流方法。图信号处理方法在处理图像时,其优势可能体现在能够利用图像中更复杂的结构信息(如果将其视为一个非均匀的图),但这超出了本文的研究范围。在本文的欧几里得网格图设定下,我们更关注图信号处理方法在处理这种规则结构信号时的表现,以及与经典方法的对比。

讨论与展望

通过在一维和二维欧几里得域信号上应用低通滤波器,我们可以观察到经典信号处理和图信号处理在处理规则结构信号时的异同。经典信号处理方法在欧几里得域表现出色,理论成熟,计算效率高。图信号处理方法虽然在欧几里得域信号上也能实现低通滤波的功能,但其计算复杂度和对图结构的依赖性是需要考虑的因素。

然而,本次研究的意义在于为理解和拓展非欧几里得域信号处理奠定基础。将欧几里得域信号视为具有特殊结构的图信号,并应用图信号处理方法,可以帮助我们:

  • 更深入理解图信号处理的原理:

     通过与经典的傅里叶分析进行对比,我们可以更直观地理解图谱域、图频率以及图滤波器的概念。

  • 为复杂非欧几里得域信号处理提供思路:

     欧几里得域是图信号处理的一个特殊且简单的例子。通过研究其在欧几里得域的表现,我们可以为处理更复杂、不规则的图结构信号积累经验。

  • 探索图信号处理在经典问题中的应用潜力:

     尽管经典方法在欧几里得域效率很高,但在某些特定应用场景下,利用图信号处理的方法可能能够更好地利用信号的局部结构信息,或者为某些特殊需求提供新的解决方案。

未来的研究可以进一步探讨:

  • 不同图结构对滤波效果的影响:

     除了链状图和网格图,还可以考虑在欧几里得域信号上构建其他类型的图,例如基于距离的图,并研究其对低通滤波效果的影响。

  • 图信号处理中的非线性滤波器:

     本文主要关注线性低通滤波器。可以研究如何在图谱域设计和实现非线性滤波器,以处理更复杂的信号特征。

  • 图信号处理在实际欧几里得域应用中的潜在优势:

     尽管计算复杂,图信号处理是否能在某些特定欧几里得域应用中展现出独特的优势,例如对特定噪声的抑制能力或对边缘信息的保留。

  • 将经典方法和图信号处理方法结合:

     探索如何将两种方法的优势结合起来,设计混合信号处理方案,以提高滤波效果或降低计算成本。

结论

本文在一维和二维欧几里得域信号上,对使用经典信号处理和图信号处理方法应用低通滤波器进行了研究。通过将欧几里得域信号视为具有特殊结构的图信号,我们应用了基于图拉普拉斯算子的图信号处理方法,并与基于傅里叶分析的经典方法进行了对比。研究表明,在欧几里得域,经典信号处理方法理论成熟、计算高效,是处理这类信号的主流选择。图信号处理方法虽然也能实现低通滤波的功能,但其计算复杂度和对图结构的依赖性需要考虑。

然而,本次研究更重要的意义在于,通过在熟悉的欧几里得域进行对比研究,为理解图信号处理的原理提供了直观的视角,并为未来拓展非欧几里得域信号处理奠定了基础。随着现实世界中非欧几里得域数据的日益增多,图信号处理作为处理这类数据的有力工具,将发挥越来越重要的作用。本次研究不仅加深了对两种信号处理范式的理解,也为探索图信号处理在更广泛领域的应用提供了启示。

⛳️ 运行结果

🔗 参考文献

[1] 易琛.信道编码的二维应用及盲识别研究[D].重庆邮电大学,2013.DOI:10.7666/d.Y2400085.

[2] 魏静.采用Matlab和误差函数法对轨迹生成四杆机构的优化及仿真[J].机械与电子, 2016, 34(1):5.DOI:10.3969/j.issn.1001-2257.2016.01.003.

[3] 牛红惠,徐甜.基于聚类粒子群算法网络异常检测模型研究[J].微电子学与计算机, 2012, 29(3):4.DOI:CNKI:SUN:WXYJ.0.2012-03-025.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值