✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
脑电图 (EEG) 作为一种无创性的神经生理学技术,在临床诊断和脑科学研究中发挥着举足轻重的作用。EEG 信号反映了大脑皮层神经元群体活动的电位变化,其分析对于理解大脑功能状态、识别病理活动以及评估认知过程至关重要。EEG 信号具有高度的非线性和非平稳性,其能量分布在时间和频率上表现出动态变化。因此,准确、及时地评估 EEG 信号的瞬时能量具有重要意义,它能揭示大脑活动在特定时间和特定频率下的能量强度,从而更精细地刻画神经动态。
传统的 EEG 能量分析方法通常基于傅里叶变换,例如短时傅里叶变换 (STFT)。STFT 通过对信号进行分段并对每个短时窗应用傅里叶变换,从而在时间和频率二维平面上表征信号的能量分布。然而,STFT 存在时频分辨率的权衡问题:提高时间分辨率会降低频率分辨率,反之亦然。此外,STFT 输出的是复数频谱,其能量的计算通常需要取模平方,这在一定程度上丢失了相位信息。
为了更准确地捕捉 EEG 信号的瞬时能量,研究人员提出了多种能量算子。这些算子旨在直接估计信号的瞬时能量,避免了傅里叶变换的限制。本文将重点探讨一种重要的能量算子——非负、频率加权能量算子(Nonnegative, Frequency-Weighted Energy Operator, NFEO),并阐述其在评估 EEG 瞬时能量方面的优势及其在脑电信号分析中的应用前景。
能量算子的理论基础
能量算子(Energy Operator, EO),也称为 Teager-Kaiser 能量算子,由 Teager 和 Kaiser 在 20 世纪 80 年代提出。最初,EO 主要应用于语音信号的瞬时频率和能量估计。
然而,经典的能量算子也存在一些局限性。首先,它对于噪声非常敏感,微小的噪声扰动可能会导致能量估计出现较大的偏差。其次,对于多分量信号,经典的能量算子会产生交叉项,导致对每个分量瞬时能量的估计不够准确。
非负、频率加权能量算子 (NFEO)
为了克服经典能量算子的一些局限性,并使其更适用于复杂的 EEG 信号分析,研究人员发展了各种改进的能量算子。非负、频率加权能量算子 (NFEO) 是其中一种重要的改进。NFEO 的核心思想是引入频率加权的概念,并且保证能量估计的非负性。
这个离散形式的 NFEO 实际上可以看作是经典连续能量算子的一种近似。它利用信号在当前时刻、前一时刻和后一时刻的值来估计能量。之所以称其为“非负”是因为对于许多常见的信号类型,例如单频信号或包络缓慢变化的信号,这个算子的输出通常是非负的。
相对于经典的连续能量算子需要计算导数,离散形式的 NFEO 只涉及简单的乘法和减法运算,计算效率更高,更易于在数字信号处理中实现。此外,与 STFT 相比,NFEO 是一种时间局部的算子,其能量估计只依赖于信号在极短时间窗内(例如三个采样点)的信息,因此具有更好的瞬时性,能够更灵敏地捕捉能量的快速变化。
NFEO 在 EEG 中的应用
EEG 信号包含了丰富的频率成分,反映了大脑不同功能的活动。例如,delta 波 (0.5-4 Hz) 与睡眠和深度放松有关,theta 波 (4-8 Hz) 与记忆和认知活动有关,alpha 波 (8-13 Hz) 与放松和注意力不集中有关,beta 波 (13-30 Hz) 与主动思考和集中注意力有关,而 gamma 波 (>30 Hz) 则与高级认知功能和信息整合有关。评估这些不同频率段的瞬时能量变化对于理解大脑的动态活动至关重要。
NFEO 在 EEG 中的应用通常涉及以下步骤:
- 信号滤波:
由于 EEG 信号是多分量的,直接对原始 EEG 信号应用 NFEO 可能会产生交叉项。因此,在应用 NFEO 之前,通常需要将 EEG 信号滤波到感兴趣的频率带。例如,如果研究者对 alpha 波的瞬时能量感兴趣,可以先对原始 EEG 信号进行 8-13 Hz 的带通滤波,然后再对滤波后的信号应用 NFEO。
- 应用 NFEO:
对滤波后的信号应用离散形式的 NFEO 算子,得到该频率带的瞬时能量估计。
- 平滑:
NFEO 的输出可能会存在一些高频噪声或波动,为了获得更稳定的能量估计,通常会对 NFEO 的输出进行平滑处理,例如使用移动平均滤波。
- 时频分析:
通过对不同频率带的滤波信号分别应用 NFEO,可以构建出 EEG 信号在时间和频率上的瞬时能量分布图,类似于时频图。
通过应用 NFEO 对 EEG 信号进行分析,研究人员可以获得以下信息:
- 瞬时能量动态:
揭示特定频率带能量随时间的快速变化,例如在认知任务执行过程中的能量增强或减弱。
- 事件相关能量变化:
识别与特定刺激或事件相关的瞬时能量变化,从而分析大脑在处理信息过程中的能量消耗和分配。
- 病理活动识别:
检测与癫痫、睡眠障碍等病理状态相关的异常能量波动模式。例如,癫痫发作通常伴随着特定频率带能量的急剧增加。
- 脑网络连接分析:
通过分析不同脑区在特定频率带的瞬时能量之间的相关性,可以探索大脑功能网络的动态连接。
NFEO 的优势与局限性
NFEO 相对于传统的时频分析方法在评估 EEG 瞬时能量方面具有以下优势:
- 瞬时性:
NFEO 是一种时间局部的算子,能够更灵敏地捕捉能量的快速变化,尤其适用于分析 EEG 信号中瞬时发生的神经事件。
- 计算效率:
离散形式的 NFEO 计算简单,效率高,适用于大数据量的 EEG 分析。
- 非负性:
NFEO 的输出通常是非负的,更直观地反映了能量的强度。
- 频率加权特性:
自然地反映了高频分量对能量的更大贡献。
然而,NFEO 也存在一些局限性:
- 多分量信号处理:
对于多分量信号,即使经过滤波,NFEO 仍然可能存在交叉项,影响对单个分量瞬时能量的精确估计。虽然可以通过更精细的信号分解技术(例如经验模态分解 EMD 或变分模态分解 VMD)与 NFEO 结合来解决这个问题,但这增加了分析的复杂度。
- 噪声敏感性:
虽然离散形式的 NFEO 对某些类型的噪声有一定鲁棒性,但对于强噪声信号,其性能可能会下降。
- 能量的解释:
NFEO 的输出是一种频率加权的能量度量,其单位和具体物理意义需要结合具体应用进行解释。它不同于传统的功率谱密度。
未来的研究方向
未来对于 NFEO 在 EEG 瞬时能量评估方面的研究可以集中在以下几个方面:
- NFEO 与信号分解方法的结合:
探索将 NFEO 与先进的信号分解方法(如 EMD、VMD、独立分量分析 ICA 等)结合,以更准确地分离和估计不同信号分量的瞬时能量。
- NFEO 的改进和扩展:
研究更鲁棒、更精确的 NFEO 形式,以提高其在噪声环境和多分量信号中的性能。例如,可以考虑引入自适应滤波或机器学习技术来优化 NFEO 的参数。
- 基于 NFEO 的脑网络分析:
深入研究如何利用 NFEO 估计的瞬时能量信息来构建和分析动态脑网络,从而揭示大脑功能连接的动态特性。
- NFEO 在特定 EEG 应用中的验证:
在各种临床和研究场景下验证 NFEO 在识别病理活动、评估认知功能等方面的有效性,并与其他能量分析方法进行比较。
- NFEO 的可视化方法:
开发更直观、更有效的可视化方法来展示基于 NFEO 的 EEG 瞬时能量分布和动态变化。
结论
评估 EEG 信号的瞬时能量是理解大脑动态功能和识别神经病理的重要手段。非负、频率加权能量算子 (NFEO) 作为一种有效的能量算子,以其瞬时性、计算效率和频率加权特性,为 EEG 瞬时能量分析提供了新的视角。尽管存在一些局限性,但通过与信号处理技术的结合和方法的改进,NFEO 在 EEG 分析领域的应用前景广阔。未来的研究应继续探索 NFEO 的潜力,以更深入地揭示大脑活动的能量动态,从而为临床诊断和神经科学研究提供更强大的工具。对 EEG 瞬时能量的精确评估,将有助于我们更全面地理解大脑的复杂工作机制。
⛳️ 运行结果
🔗 参考文献
[1] 徐元博,蔡宗琰,胡永彪,等.强噪声背景下频率加权能量算子和变分模态分解在轴承故障提取中的应用[J].振动工程学报, 2018, 31(3):10.DOI:10.16385/j.cnki.issn.1004-4523.2018.03.017.
[2] 徐元博,蔡宗琰.频率加权能量算子在振动筛故障诊断中的应用[J].煤炭学报, 2017, 42(9):8.DOI:10.13225/j.cnki.jccs.2017.0126.
[3] 李臻.分数阶频率加权能量算子在滚动轴承故障诊断中的应用[J].煤矿机械, 2024, 45(4):165-168.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇