✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在工业控制领域,比例-积分-微分(PID)控制器因其结构简单、易于实现和鲁棒性强而得到广泛应用。然而,传统的PID参数整定方法往往依赖于经验、试错或模型辨识,效率低下且难以适应被控对象时变或不确定性的情况。近年来,智能优化算法为解决PID参数优化问题提供了新的思路。本文深入研究了基于粒子群优化(PSO)算法自适应调节PID参数的方法,并构建了相应的仿真平台。首先,详细阐述了PID控制器的基本原理以及其参数对系统性能的影响。其次,系统介绍了粒子群优化算法的机理,包括粒子的更新方式、全局最优和个体最优的概念。然后,构建了基于PSO算法的PID参数自适应调节模型,重点阐述了如何定义适应度函数来量化PID控制器的性能,以及如何将PSO算法应用于寻找最优的比例系数(Kp)、积分时间(Ti)或积分系数(Ki)和微分时间(Td)或微分系数(Kd)。最后,在Matlab/Simulink环境下进行了仿真实验,针对不同的被控对象模型,对比分析了基于PSO算法自整定PID与传统整定方法(如Ziegler-Nichols法)的控制效果,包括系统的超调量、调节时间、稳态误差和鲁棒性等指标。仿真结果表明,基于PSO算法的自适应PID控制器在提高控制系统的动态性能和鲁棒性方面具有显著优势,能够有效地实现PID参数的在线或离线优化,为复杂工业过程的控制提供了有效的解决方案。
关键词: PID控制器;粒子群优化(PSO);参数整定;自适应控制;仿真;Matlab/Simulink
1. 引言
比例-积分-微分(PID)控制器是自动控制领域应用最广泛的控制器之一,其核心思想在于通过对系统误差的比例、积分和微分作用来产生控制信号,从而消除或减小稳态误差、提高系统的动态响应速度并抑制超调[1]。PID控制器因其简单有效的特点,在温度、压力、流量、速度等各种工业过程控制中扮演着至关重要的角色。
然而,PID控制器的性能严重依赖于其三个参数:比例系数Kp、积分时间和Ti(或积分系数Ki)和微分时间和Td(或微分系数Kd)。不合适的参数可能导致系统振荡、超调过大、响应缓慢或稳态误差无法消除等问题。传统的PID参数整定方法主要包括经验法、试凑法、Ziegler-Nichols法、Cohn法等[2]。这些方法虽然在某些情况下有效,但也存在一定的局限性。经验法和试凑法依赖于工程师的经验和直觉,效率低下且难以保证最优性能。Ziegler-Nichols法等基于模型的方法通常需要对被控对象进行精确的数学建模,而许多实际工业过程模型难以获得或存在高度的非线性和时变性[3]。此外,对于参数发生变化的系统,传统的静态PID参数无法保证最优控制效果,需要进行人工重新整定,增加了维护成本和复杂性。
为了克服传统PID参数整定方法的局限性,研究人员提出了许多自适应PID控制策略,其中基于智能优化算法的方法近年来备受关注[4]。智能优化算法,如遗传算法(GA)、粒子群优化(PSO)、蚁群算法(ACO)、差分进化算法(DE)等,具有并行搜索、全局寻优和对模型依赖性较低等特点,非常适合用于解决复杂的优化问题,包括PID参数的优化。
本文重点研究基于粒子群优化(PSO)算法自适应调节PID参数的方法。PSO算法是一种源于对鸟群捕食行为研究的智能优化算法,具有概念简单、实现容易、收敛速度快等优点[5]。将其应用于PID参数的自适应整定,可以实现在线或离线地寻找最优的Kp、Ki和Kd参数,从而提高控制系统的性能。
2. PID控制器的基本原理与参数影响
PID控制器通过对系统误差e(t)进行比例、积分和微分运算产生控制信号u(t)。其时域表达式为:
u(t) = Kp * e(t) + Ki * ∫e(τ)dτ + Kd * de(t)/dt (2.1)
其中,e(t) = r(t) - y(t) 是设定值r(t)与实际输出y(t)之间的误差。
在工程实践中,为了避免对微分信号的直接放大,通常采用增量式PID控制或带有微分滤波的PID控制。增量式PID控制器的输出增量Δu(k)表示为:
Δu(k) = Kp * [e(k) - e(k-1)] + Ki * e(k) + Kd * [e(k) - 2e(k-1) + e(k-2)] (2.2)
其中,e(k)是k时刻的误差。控制器的实际输出u(k)为:
u(k) = u(k-1) + Δu(k) (2.3)
PID三个参数对系统性能的影响如下:
- 比例系数 Kp:
主要影响系统的响应速度和稳态误差。增大Kp可以提高系统的响应速度,但过大的Kp会导致系统超调增大,甚至振荡[2]。
- 积分系数 Ki (或积分时间 Ti):
主要用于消除系统的稳态误差。Ki越大(Ti越小),消除稳态误差的速度越快,但积分作用过强会引起系统振荡或积分饱和[2]。
- 微分系数 Kd (或微分时间 Td):
主要用于改善系统的动态性能,尤其是减少超调和缩短调节时间。Kd越大(Td越大),对误差变化的抑制作用越强,但过大的Kd会放大高频噪声,导致系统不稳定[2]。
因此,合理地整定Kp、Ki和Kd参数对于保证PID控制器的优良性能至关重要。
3. 粒子群优化(PSO)算法
粒子群优化(PSO)算法是一种受鸟群、鱼群等群体行为启发的随机搜索算法[5]。在PSO算法中,每个潜在的解被视为搜索空间中的一个“粒子”,每个粒子具有位置和速度两个属性。粒子通过跟踪个体最优解(pbest)和全局最优解(gbest)来更新自己的位置和速度,从而在搜索空间中寻找最优解。
PSO算法的基本步骤如下:
3.1 初始化粒子群: 在搜索空间中随机初始化N个粒子的位置和速度。每个粒子的位置表示一个潜在的解,例如对于PID参数优化问题,粒子的位置可以表示为一个三维向量 (Kp, Ki, Kd)。
3.2 评估适应度: 根据预定义的适应度函数,评估每个粒子的当前位置所代表解的优劣程度。适应度函数是衡量PID控制器性能的指标,例如可以根据系统的超调量、调节时间、稳态误差和控制输入能量等来定义。
3.3 更新个体最优解(pbest): 记录每个粒子迄今为止所找到的最佳位置,即个体最优解 pbest。如果粒子当前位置的适应度优于其历史最优适应度,则更新该粒子的pbest。
3.4 更新全局最优解(gbest): 记录整个粒子群迄今为止所找到的最佳位置,即全局最优解 gbest。在所有粒子的pbest中,适应度最优的位置即为当前的gbest。
3.5 更新粒子的速度和位置: 粒子根据以下公式更新其速度和位置:
v_i(t+1) = ω * v_i(t) + c1 * rand1() * (pbest_i - x_i(t)) + c2 * rand2() * (gbest - x_i(t)) (3.1)
x_i(t+1) = x_i(t) + v_i(t+1) (3.2)
其中:
-
v_i(t) 和 x_i(t) 分别是粒子 i 在时刻 t 的速度和位置。
-
v_i(t+1) 和 x_i(t+1) 分别是粒子 i 在时刻 t+1 的速度和位置。
-
ω 是惯性权重,用于平衡全局搜索和局部搜索能力。
-
c1 和 c2 是学习因子,分别表示粒子向个体最优解和全局最优解学习的权重。
-
rand1() 和 rand2() 是在 [0, 1] 范围内均匀分布的随机数。
-
pbest_i 是粒子 i 的个体最优位置。
-
gbest 是整个粒子群的全局最优位置。
3.6 迭代终止条件: 重复步骤 3.2 到 3.5,直到满足预设的终止条件,例如达到最大迭代次数或全局最优解的适应度达到某个阈值。
通过不断迭代更新,粒子群会逐渐向最优解区域收敛。
4. 基于PSO算法的PID参数自适应调节模型
将PSO算法应用于PID参数自适应调节的核心在于构建合适的优化模型。本节将详细阐述模型的构建过程:
4.1 优化目标: 优化目标是寻找一组最优的PID参数 (Kp, Ki, Kd),使得控制系统在设定的性能指标下达到最优。性能指标可以包括快速性、准确性和稳定性。
4.2 搜索空间: 搜索空间由Kp、Ki和Kd的取值范围构成。在实际应用中,这些参数通常有物理或工程上的限制,需要设定合理的上下界。例如,Kp、Ki和Kd通常为非负值,且存在一个最大允许值。
4.3 粒子表示: 每个粒子代表一组潜在的PID参数。对于PID参数优化,一个粒子可以表示为一个三维向量 [Kp, Ki, Kd]。
4.4 适应度函数: 适应度函数是衡量PID控制器性能的关键。一个好的适应度函数应该能够量化控制系统的响应特性。常用的适应度函数包括:
- ITAE (Integral of Time-weighted Absolute Error):
∫t|e(t)|dt
- ISE (Integral of Squared Error):
∫e^2(t)dt
- IAE (Integral of Absolute Error):
∫|e(t)|dt
- 超调量和调节时间的加权和:
w1 * M_p + w2 * t_s
其中,M_p是系统的最大超调量,t_s是系统的调节时间,w1和w2是权重系数。
在实际应用中,可以根据具体的控制要求选择或组合这些指标来构建适应度函数。例如,为了兼顾快速性和抑制超调,可以采用ITAE作为适应度函数,因为它对长时间存在的误差有较大的惩罚。如果要求系统响应快速且超调小,可以考虑将超调量和调节时间加权作为适应度函数。适应度函数的值越小,表示PID控制器的性能越好。因此,这是一个最小化问题。
4.5 PSO算法与PID参数的连接:
在PSO算法的迭代过程中,每个粒子的位置 [Kp, Ki, Kd] 代表一组PID参数。当评估某个粒子的适应度时,需要将这组PID参数应用于被控对象模型,并进行仿真或实际控制实验,然后根据系统的响应计算出相应的性能指标,作为该粒子的适应度值。
具体的连接过程如下:
-
初始化粒子群: 随机生成 N 个粒子,每个粒子包含初始位置 [Kp, Ki, Kd] 和初始速度 [v_Kp, v_Ki, v_Kd]。同时,初始化每个粒子的 pbest 和整个粒子群的 gbest。
-
循环迭代: 在每次迭代中:
a. 评估适应度: 对于每个粒子 i,将其位置 [Kp_i, Ki_i, Kd_i] 作为PID控制器的参数,将其应用于被控对象模型(例如在Simulink中建立仿真模型),输入一个阶跃信号或其他测试信号,并记录系统的响应。根据预定义的适应度函数,计算该粒子当前位置的适应度值 fitness_i。
b. 更新个体最优解: 如果 fitness_i 优于粒子 i 的 pbest 的适应度值,则更新 pbest_i = [Kp_i, Ki_i, Kd_i]。
c. 更新全局最优解: 在所有粒子的 pbest 中,找到适应度最优的那个,更新 gbest。
d. 更新速度和位置: 根据公式 (3.1) 和 (3.2) 更新每个粒子的速度和位置。在更新位置时,需要考虑 PID 参数的取值范围,例如将超出范围的参数限制在范围内。 -
判断终止条件: 如果达到最大迭代次数或 gbest 的适应度达到预设阈值,则算法终止。
-
输出最优参数: 算法终止时,gbest 所对应的 [Kp, Ki, Kd] 即为PSO算法寻找到的最优PID参数。
5. 结论与展望
本文深入研究了基于PSO粒子群优化算法自适应调节PID参数的方法,并构建了相应的仿真平台。通过仿真实验,针对一阶和二阶典型被控对象,对比分析了基于PSO算法自整定PID与传统Ziegler-Nichols法的控制效果。仿真结果表明,基于PSO算法的自适应PID控制器在提高控制系统的动态性能方面具有显著优势,能够有效减小超调量、缩短调节时间,且表现出一定的鲁棒性。这验证了将PSO算法应用于PID参数优化是可行且有效的。
基于PSO算法的PID参数自适应调节方法具有以下优点:
- 自适应性强:
能够根据被控对象特性和控制目标自动寻找最优PID参数,无需人工干预和复杂的模型辨识。
- 全局寻优能力:
PSO算法具有全局搜索能力,理论上能够跳出局部最优,寻找到更优的参数组合。
- 易于实现:
PSO算法的概念和实现相对简单,便于工程应用。
- 对模型依赖性低:
PSO算法是基于性能指标进行优化的,对被控对象的精确数学模型依赖程度较低,适用于模型未知或难以建立的复杂系统。
然而,该方法也存在一些不足之处:
- 计算量较大:
PSO算法需要进行多次迭代和仿真计算,尤其是在线应用时,计算量可能会成为限制因素。
- 参数选择问题:
PSO算法本身的参数(如粒子数量、惯性权重、学习因子等)对优化结果有一定影响,需要根据实际情况进行调整。
- 收敛速度和稳定性:
在某些复杂问题中,PSO算法的收敛速度可能不够快,且存在陷入局部最优的风险。
未来的研究可以围绕以下几个方面展开:
- 提高PSO算法的收敛速度和全局寻优能力:
改进PSO算法,例如采用多种群协同进化、引入混沌搜索等策略,以提高算法的性能。
- 在线自适应调节:
进一步研究如何将基于PSO算法的PID参数优化方法应用于在线控制系统,解决计算实时性和鲁棒性问题。可以考虑采用周期性整定或基于事件触发的整定策略。
- 多目标优化:
在实际控制中,可能需要同时优化多个性能指标(如快速性、平稳性、控制能量等),可以研究基于多目标PSO算法的PID参数优化方法。
- 与其他智能算法的结合:
将PSO算法与其他智能算法(如模糊逻辑、神经网络、强化学习等)相结合,形成混合智能控制策略,以进一步提升控制系统的性能和自适应能力。
- 在不同工业领域的应用:
将基于PSO算法的PID自适应控制方法应用于更广泛的工业过程,如机器人控制、电力系统控制、化工过程控制等,并进行实际的工程验证。
⛳️ 运行结果
🔗 参考文献
[1] 肖琴.粒子群优化算法的研究与改进[D].江西理工大学[2025-05-16].DOI:CNKI:CDMD:2.2010.020293.
[2] 喻骁,刘东,兰维瑶.基于PSO算法的机械臂PID控制器参数优化[J].组合机床与自动化加工技术, 2011(2):4.DOI:10.3969/j.issn.1001-2265.2011.02.025.
[3] 刘雪峰,张宏立.粒子群算法在非线性PID控制系统参数整定中的应用[J].信息系统工程, 2010(5):2.DOI:10.3969/j.issn.1001-2362.2010.05.047.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇