矩形介质柱的 k k k空间相对介电常数计算:
α
(
G
)
=
{
α
A
f
+
α
B
(
1
−
f
)
,
G
=
0
(
α
A
−
α
B
)
P
(
G
)
,
G
≠
0
\alpha(G)=\left\{\begin{array}{l} \alpha_{\mathrm{A}} f+\alpha_{\mathrm{B}}(1-f), G=0 \\ \left(\alpha_{\mathrm{A}}-\alpha_{\mathrm{B}}\right) P(G), \quad G \neq 0 \end{array}\right.
α(G)={αAf+αB(1−f),G=0(αA−αB)P(G),G=0
其中,
f
f
f是填充率,等于介质柱横截面积/二维正格子原胞面积,
α
A
\alpha_{\mathrm{A}}
αA是背景的相对介电常数,
α
B
\alpha_{\mathrm{B}}
αB是介质的相对介电常数,
G
G
G在这里是指倒格矢,但在编程中不是完全套倒格矢进去,
P
(
G
)
P(G)
P(G)在这里叫结构因子,对于矩形介质柱,它指代如下:
P
(
G
)
=
f
sin
(
G
~
x
l
x
)
G
~
x
l
x
sin
(
G
~
y
l
y
)
G
~
y
l
y
P(\boldsymbol{G})=f \frac{\sin \left(\tilde{G}_{x} l_{x}\right)}{\tilde{G}_{x} l_{x}} \frac{\sin \left(\tilde{G}_{y} l_{y}\right)}{\tilde{G}_{y} l_{y}}
P(G)=fG~xlxsin(G~xlx)G~ylysin(G~yly)
其中,
2
l
x
2 l_{x}
2lx和
2
l
y
2 l_{y}
2ly分别是矩形柱子的长度和宽度,
f
f
f是填充率,其中还有:
{
G
~
x
=
G
x
cos
θ
+
G
y
sin
θ
G
~
y
=
−
G
x
sin
θ
+
G
y
cos
θ
\left\{\begin{array}{l} \tilde{G}_{x}=G_{x} \cos \theta+G_{y} \sin \theta \\ \tilde{G}_{y}=-G_{x} \sin \theta+G_{y} \cos \theta \end{array}\right.
{G~x=Gxcosθ+GysinθG~y=−Gxsinθ+Gycosθ
其中
θ
\theta
θ是我的另一篇博文里说的输入的参数之一,代表的意义如下:
这个是正空间里的图像。
正六边形介质柱的 k k k空间相对介电常数计算:
同上面一样,有:
α
(
G
)
=
{
α
A
f
+
α
B
(
1
−
f
)
,
G
=
0
(
α
A
−
α
B
)
P
(
G
)
,
G
≠
0
\alpha(G)=\left\{\begin{array}{l} \alpha_{\mathrm{A}} f+\alpha_{\mathrm{B}}(1-f), G=0 \\ \left(\alpha_{\mathrm{A}}-\alpha_{\mathrm{B}}\right) P(G), \quad G \neq 0 \end{array}\right.
α(G)={αAf+αB(1−f),G=0(αA−αB)P(G),G=0
其中各参数和上面意义相同,结构因子为:
P
(
G
)
=
{
2
f
3
G
x
b
[
sin
(
G
~
x
b
)
+
1
−
cos
(
G
~
x
b
)
G
~
x
b
]
,
G
~
x
≠
0
,
G
~
y
=
0
f
3
G
x
b
[
1
−
cos
(
2
G
~
x
b
)
2
G
~
x
b
+
sin
(
2
G
~
x
b
)
]
,
∣
G
~
x
∣
=
∣
G
~
y
∣
/
3
,
G
~
y
≠
0
,
f
G
y
b
[
cos
(
G
~
y
b
3
−
G
~
x
b
)
−
cos
(
2
G
~
y
b
3
)
(
G
~
y
+
3
G
~
x
)
b
+
cos
(
G
~
y
b
3
+
G
~
x
b
)
−
cos
(
2
G
~
y
b
3
)
(
G
~
y
−
3
G
~
x
)
b
]
,
∣
G
~
x
∣
≠
∣
G
~
y
∣
/
3
,
G
~
y
≠
0
P(G)=\left\{\begin{array}{ll} \frac{2 f}{3 G_{x} b}\left[\sin \left(\tilde{G}_{x} b\right)+\frac{1-\cos \left(\tilde{G}_{x} b\right)}{\tilde{G}_{x} b}\right], & \tilde{G}_{x} \neq 0, \tilde{G}_{y}=0 \\ \frac{f}{3 G_{x} b}\left[\frac{1-\cos \left(2 \tilde{G}_{x} b\right)}{2 \tilde{G}_{x} b}+\sin \left(2 \tilde{G}_{x} b\right)\right], & \left|\tilde{G}_{x}\right|=\left|\tilde{G}_{y}\right| / \sqrt{3}, \tilde{G}_{y} \neq 0, \\ \frac{f}{G_{y} b}\left[\frac{\cos \left(\frac{\tilde{G}_{y} b}{\sqrt{3}}-\tilde{G}_{x} b\right)-\cos \left(\frac{2 \tilde{G}_{y} b}{\sqrt{3}}\right)}{\left(\tilde{G}_{y}+\sqrt{3} \tilde{G}_{x}\right) b}+\frac{\cos \left(\frac{\tilde{G}_{y} b}{\sqrt{3}}+\tilde{G}_{x} b\right)-\cos \left(\frac{2 \tilde{G}_{y} b}{\sqrt{3}}\right)}{\left(\tilde{G}_{y}-\sqrt{3} \tilde{G}_{x}\right) b}\right],\left|\tilde{G}_{x}\right| \neq\left|\tilde{G}_{y}\right| / \sqrt{3}, \tilde{G}_{y} \neq 0 \end{array}\right.
P(G)=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧3Gxb2f[sin(G~xb)+G~xb1−cos(G~xb)],3Gxbf[2G~xb1−cos(2G~xb)+sin(2G~xb)],Gybf⎣⎡(G~y+3G~x)bcos(3G~yb−G~xb)−cos(32G~yb)+(G~y−3G~x)bcos(3G~yb+G~xb)−cos(32G~yb)⎦⎤,∣∣∣G~x∣∣∣=∣∣∣G~y∣∣∣/3,G~y=0G~x=0,G~y=0∣∣∣G~x∣∣∣=∣∣∣G~y∣∣∣/3,G~y=0,
其中,b是六边形的六个边宽度。而且也有:
{
G
~
x
=
G
x
cos
θ
+
G
y
sin
θ
G
~
y
=
−
G
x
sin
θ
+
G
y
cos
θ
\left\{\begin{array}{l} \tilde{G}_{x}=G_{x} \cos \theta+G_{y} \sin \theta \\ \tilde{G}_{y}=-G_{x} \sin \theta+G_{y} \cos \theta \end{array}\right.
{G~x=Gxcosθ+GysinθG~y=−Gxsinθ+Gycosθ
其中
θ
\theta
θ是我的另一篇博文里说的输入的参数之一,代表的意义如下:
对于填充率:
f
=
4
l
x
l
y
/
a
2
and
f
=
3
3
b
2
/
2
a
2
f=4 l_{x} l_{y} / a^{2} \text { and } f=3 \sqrt{3} b^{2} / 2 a^{2}
f=4lxly/a2 and f=33b2/2a2
参考文献:
Hui Y , Guo-Hong Y , Yong-Jun C . Effects of rotating noncircular scatterers on spin-wave band gaps of two-dimensional magnonic crystals[J]. Chinese Physics B, 2014(9):423-427.
正三角形介质柱的 k k k空间相对介电常数计算:
ε
−
1
(
G
−
G
′
)
\varepsilon^{-1}\left(\mathbf{G}-\mathbf{G}^{\prime}\right)
ε−1(G−G′) represents the inverse of the matrix
ε
(
G
−
G
′
)
.
\varepsilon\left(\mathbf{G}-\mathbf{G}^{\prime}\right) .
ε(G−G′).
同时也有:
ε
(
G
)
=
{
f
⋅
ε
A
+
(
1
−
f
)
ε
B
G
=
0
(
ε
A
−
ε
B
)
I
(
G
)
G
≠
0
\varepsilon(\mathbf{G})=\left\{\begin{array}{ll} f \cdot \varepsilon_{\mathrm{A}}+(1-f) \varepsilon_{\mathrm{B}} & \mathbf{G}=0 \\ \left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{B}}\right) I(\mathbf{G}) & \mathbf{G} \neq 0 \end{array}\right.
ε(G)={f⋅εA+(1−f)εB(εA−εB)I(G)G=0G=0
其中,其中,
f
f
f是填充率,等于介质柱横截面积/二维正格子原胞面积,
ε
A
\varepsilon_{\mathrm{A}}
εA是背景的相对介电常数,
ε
B
\varepsilon_{\mathrm{B}}
εB是介质的相对介电常数,其中
I
(
G
)
I(\mathbf{G})
I(G)等于:
I
(
G
)
=
1
s
∫
s
r
e
−
i
G
⋅
r
d
r
I(\mathbf{G})=\frac{1}{s} \int_{s_{\mathrm{r}}} \mathrm{e}^{-\mathrm{i} G \cdot \mathrm{r}} \mathrm{d} \mathbf{r}
I(G)=s1∫sre−iG⋅rdr
这是一个普遍适用的积分。这个积分是很重要的,它的积分区域是在一个单元中棒的横截面积上积分,
s
s
s是代表正格子原胞面积。它是面积积分。
对于正三角形:
其中,
l
l
l是三角形每条边的长度。
G
x
G_{x}
Gx和
G
y
G_{y}
Gy是倒格矢
G
G
G的
x
x
x和
y
y
y分量,而且有:
(
G
^
x
G
^
y
)
=
(
cos
θ
sin
θ
−
sin
θ
cos
θ
)
(
G
x
G
y
)
\left(\begin{array}{l} \hat{G}_{x} \\ \hat{G}_{y} \end{array}\right)=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right)\left(\begin{array}{l} G_{x} \\ G_{y} \end{array}\right)
(G^xG^y)=(cosθ−sinθsinθcosθ)(GxGy)
θ
\theta
θ代表的意义如下:
参考文献:
Kuang W , Hou Z , Liu Y , et al. The bandgap of a photonic crystal with triangular dielectric rods in a honeycomb lattice[J]. Journal of Optics A Pure & Applied Optics, 2005, 7(10):525.
椭圆形介质柱的 k k k空间相对介电常数计算:
同样有:
ε
(
G
)
=
{
f
⋅
ε
A
+
(
1
−
f
)
ε
B
G
=
0
(
ε
A
−
ε
B
)
P
(
G
)
G
≠
0
\varepsilon(\mathbf{G})=\left\{\begin{array}{ll} f \cdot \varepsilon_{\mathrm{A}}+(1-f) \varepsilon_{\mathrm{B}} & \mathbf{G}=0 \\ \left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{B}}\right) P(\mathbf{G}) & \mathbf{G} \neq 0 \end{array}\right.
ε(G)={f⋅εA+(1−f)εB(εA−εB)P(G)G=0G=0
各参数代表的含义和上述相同。
P
(
G
⃗
)
=
2
F
d
J
1
(
(
L
x
G
x
′
)
2
+
(
L
y
G
y
′
)
2
)
(
L
x
G
x
′
)
2
+
(
L
y
G
y
′
)
2
where
(
G
x
′
G
y
′
)
=
(
cos
θ
sin
θ
−
sin
θ
cos
θ
)
(
G
x
G
y
)
\begin{aligned} &P(\vec{G})=\frac{2 F_{d} J_{1}\left(\sqrt{\left(L_{x} G_{x}^{\prime}\right)^{2}+\left(L_{y} G_{y}^{\prime}\right)^{2}}\right)}{\sqrt{\left(L_{x} G_{x}^{\prime}\right)^{2}+\left(L_{y} G_{y}^{\prime}\right)^{2}}}\\ &\text { where }\\ &\left(\begin{array}{l} G_{x}^{\prime} \\ G_{y}^{\prime} \end{array}\right)=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right)\left(\begin{array}{l} G_{x} \\ G_{y} \end{array}\right) \end{aligned}
P(G)=(LxGx′)2+(LyGy′)22FdJ1((LxGx′)2+(LyGy′)2) where (Gx′Gy′)=(cosθ−sinθsinθcosθ)(GxGy)
其中,其中Lx是椭圆沿x方向的半轴,Ly是椭圆沿y方向的半轴,
θ
\theta
θ是椭圆的夹角。
J
1
J_{1}
J1是一阶贝塞尔函数,
F
d
=
F_{d}=
Fd=
π
L
x
L
y
/
S
cell
\pi L_{x} L_{y} / S_{\text {cell }}
πLxLy/Scell ,
S
cell
S_{\text {cell }}
Scell 是正格子原胞面积。
参考文献:
Feng Y , Wu F , Zhong H , et al. Defect modes created by an elliptic defect in two-dimensional triangular photonic crystals[J]. Solid State Communications, 2007, 142(4):223-227.