光子晶体介质柱的讨论

矩形介质柱的 k k k空间相对介电常数计算:

α ( G ) = { α A f + α B ( 1 − f ) , G = 0 ( α A − α B ) P ( G ) , G ≠ 0 \alpha(G)=\left\{\begin{array}{l} \alpha_{\mathrm{A}} f+\alpha_{\mathrm{B}}(1-f), G=0 \\ \left(\alpha_{\mathrm{A}}-\alpha_{\mathrm{B}}\right) P(G), \quad G \neq 0 \end{array}\right. α(G)={αAf+αB(1f),G=0(αAαB)P(G),G=0
其中, f f f是填充率,等于介质柱横截面积/二维正格子原胞面积, α A \alpha_{\mathrm{A}} αA是背景的相对介电常数, α B \alpha_{\mathrm{B}} αB是介质的相对介电常数, G G G在这里是指倒格矢,但在编程中不是完全套倒格矢进去, P ( G ) P(G) P(G)在这里叫结构因子,对于矩形介质柱,它指代如下:
P ( G ) = f sin ⁡ ( G ~ x l x ) G ~ x l x sin ⁡ ( G ~ y l y ) G ~ y l y P(\boldsymbol{G})=f \frac{\sin \left(\tilde{G}_{x} l_{x}\right)}{\tilde{G}_{x} l_{x}} \frac{\sin \left(\tilde{G}_{y} l_{y}\right)}{\tilde{G}_{y} l_{y}} P(G)=fG~xlxsin(G~xlx)G~ylysin(G~yly)
其中, 2 l x 2 l_{x} 2lx 2 l y 2 l_{y} 2ly分别是矩形柱子的长度和宽度, f f f是填充率,其中还有:
{ G ~ x = G x cos ⁡ θ + G y sin ⁡ θ G ~ y = − G x sin ⁡ θ + G y cos ⁡ θ \left\{\begin{array}{l} \tilde{G}_{x}=G_{x} \cos \theta+G_{y} \sin \theta \\ \tilde{G}_{y}=-G_{x} \sin \theta+G_{y} \cos \theta \end{array}\right. {G~x=Gxcosθ+GysinθG~y=Gxsinθ+Gycosθ
其中 θ \theta θ是我的另一篇博文里说的输入的参数之一,代表的意义如下:
在这里插入图片描述
这个是正空间里的图像。

正六边形介质柱的 k k k空间相对介电常数计算:

同上面一样,有:
α ( G ) = { α A f + α B ( 1 − f ) , G = 0 ( α A − α B ) P ( G ) , G ≠ 0 \alpha(G)=\left\{\begin{array}{l} \alpha_{\mathrm{A}} f+\alpha_{\mathrm{B}}(1-f), G=0 \\ \left(\alpha_{\mathrm{A}}-\alpha_{\mathrm{B}}\right) P(G), \quad G \neq 0 \end{array}\right. α(G)={αAf+αB(1f),G=0(αAαB)P(G),G=0
其中各参数和上面意义相同,结构因子为:

P ( G ) = { 2 f 3 G x b [ sin ⁡ ( G ~ x b ) + 1 − cos ⁡ ( G ~ x b ) G ~ x b ] , G ~ x ≠ 0 , G ~ y = 0 f 3 G x b [ 1 − cos ⁡ ( 2 G ~ x b ) 2 G ~ x b + sin ⁡ ( 2 G ~ x b ) ] , ∣ G ~ x ∣ = ∣ G ~ y ∣ / 3 , G ~ y ≠ 0 , f G y b [ cos ⁡ ( G ~ y b 3 − G ~ x b ) − cos ⁡ ( 2 G ~ y b 3 ) ( G ~ y + 3 G ~ x ) b + cos ⁡ ( G ~ y b 3 + G ~ x b ) − cos ⁡ ( 2 G ~ y b 3 ) ( G ~ y − 3 G ~ x ) b ] , ∣ G ~ x ∣ ≠ ∣ G ~ y ∣ / 3 , G ~ y ≠ 0 P(G)=\left\{\begin{array}{ll} \frac{2 f}{3 G_{x} b}\left[\sin \left(\tilde{G}_{x} b\right)+\frac{1-\cos \left(\tilde{G}_{x} b\right)}{\tilde{G}_{x} b}\right], & \tilde{G}_{x} \neq 0, \tilde{G}_{y}=0 \\ \frac{f}{3 G_{x} b}\left[\frac{1-\cos \left(2 \tilde{G}_{x} b\right)}{2 \tilde{G}_{x} b}+\sin \left(2 \tilde{G}_{x} b\right)\right], & \left|\tilde{G}_{x}\right|=\left|\tilde{G}_{y}\right| / \sqrt{3}, \tilde{G}_{y} \neq 0, \\ \frac{f}{G_{y} b}\left[\frac{\cos \left(\frac{\tilde{G}_{y} b}{\sqrt{3}}-\tilde{G}_{x} b\right)-\cos \left(\frac{2 \tilde{G}_{y} b}{\sqrt{3}}\right)}{\left(\tilde{G}_{y}+\sqrt{3} \tilde{G}_{x}\right) b}+\frac{\cos \left(\frac{\tilde{G}_{y} b}{\sqrt{3}}+\tilde{G}_{x} b\right)-\cos \left(\frac{2 \tilde{G}_{y} b}{\sqrt{3}}\right)}{\left(\tilde{G}_{y}-\sqrt{3} \tilde{G}_{x}\right) b}\right],\left|\tilde{G}_{x}\right| \neq\left|\tilde{G}_{y}\right| / \sqrt{3}, \tilde{G}_{y} \neq 0 \end{array}\right. P(G)=3Gxb2f[sin(G~xb)+G~xb1cos(G~xb)],3Gxbf[2G~xb1cos(2G~xb)+sin(2G~xb)],Gybf(G~y+3 G~x)bcos(3 G~ybG~xb)cos(3 2G~yb)+(G~y3 G~x)bcos(3 G~yb+G~xb)cos(3 2G~yb),G~x=G~y/3 ,G~y=0G~x=0,G~y=0G~x=G~y/3 ,G~y=0,
其中,b是六边形的六个边宽度。而且也有:
{ G ~ x = G x cos ⁡ θ + G y sin ⁡ θ G ~ y = − G x sin ⁡ θ + G y cos ⁡ θ \left\{\begin{array}{l} \tilde{G}_{x}=G_{x} \cos \theta+G_{y} \sin \theta \\ \tilde{G}_{y}=-G_{x} \sin \theta+G_{y} \cos \theta \end{array}\right. {G~x=Gxcosθ+GysinθG~y=Gxsinθ+Gycosθ
其中 θ \theta θ是我的另一篇博文里说的输入的参数之一,代表的意义如下:
在这里插入图片描述
对于填充率:
f = 4 l x l y / a 2  and  f = 3 3 b 2 / 2 a 2 f=4 l_{x} l_{y} / a^{2} \text { and } f=3 \sqrt{3} b^{2} / 2 a^{2} f=4lxly/a2 and f=33 b2/2a2
参考文献:
Hui Y , Guo-Hong Y , Yong-Jun C . Effects of rotating noncircular scatterers on spin-wave band gaps of two-dimensional magnonic crystals[J]. Chinese Physics B, 2014(9):423-427.

正三角形介质柱的 k k k空间相对介电常数计算:

ε − 1 ( G − G ′ ) \varepsilon^{-1}\left(\mathbf{G}-\mathbf{G}^{\prime}\right) ε1(GG) represents the inverse of the matrix ε ( G − G ′ ) . \varepsilon\left(\mathbf{G}-\mathbf{G}^{\prime}\right) . ε(GG).
同时也有:
ε ( G ) = { f ⋅ ε A + ( 1 − f ) ε B G = 0 ( ε A − ε B ) I ( G ) G ≠ 0 \varepsilon(\mathbf{G})=\left\{\begin{array}{ll} f \cdot \varepsilon_{\mathrm{A}}+(1-f) \varepsilon_{\mathrm{B}} & \mathbf{G}=0 \\ \left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{B}}\right) I(\mathbf{G}) & \mathbf{G} \neq 0 \end{array}\right. ε(G)={fεA+(1f)εB(εAεB)I(G)G=0G=0
其中,其中, f f f是填充率,等于介质柱横截面积/二维正格子原胞面积, ε A \varepsilon_{\mathrm{A}} εA是背景的相对介电常数, ε B \varepsilon_{\mathrm{B}} εB是介质的相对介电常数,其中 I ( G ) I(\mathbf{G}) I(G)等于:
I ( G ) = 1 s ∫ s r e − i G ⋅ r d r I(\mathbf{G})=\frac{1}{s} \int_{s_{\mathrm{r}}} \mathrm{e}^{-\mathrm{i} G \cdot \mathrm{r}} \mathrm{d} \mathbf{r} I(G)=s1sreiGrdr
这是一个普遍适用的积分。这个积分是很重要的,它的积分区域是在一个单元中棒的横截面积上积分, s s s是代表正格子原胞面积。它是面积积分。
对于正三角形:
在这里插入图片描述
其中, l l l是三角形每条边的长度。 G x G_{x} Gx G y G_{y} Gy是倒格矢 G G G x x x y y y分量,而且有:

( G ^ x G ^ y ) = ( cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ) ( G x G y ) \left(\begin{array}{l} \hat{G}_{x} \\ \hat{G}_{y} \end{array}\right)=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right)\left(\begin{array}{l} G_{x} \\ G_{y} \end{array}\right) (G^xG^y)=(cosθsinθsinθcosθ)(GxGy)
θ \theta θ代表的意义如下:
在这里插入图片描述
参考文献:
Kuang W , Hou Z , Liu Y , et al. The bandgap of a photonic crystal with triangular dielectric rods in a honeycomb lattice[J]. Journal of Optics A Pure & Applied Optics, 2005, 7(10):525.

椭圆形介质柱的 k k k空间相对介电常数计算:

同样有:
ε ( G ) = { f ⋅ ε A + ( 1 − f ) ε B G = 0 ( ε A − ε B ) P ( G ) G ≠ 0 \varepsilon(\mathbf{G})=\left\{\begin{array}{ll} f \cdot \varepsilon_{\mathrm{A}}+(1-f) \varepsilon_{\mathrm{B}} & \mathbf{G}=0 \\ \left(\varepsilon_{\mathrm{A}}-\varepsilon_{\mathrm{B}}\right) P(\mathbf{G}) & \mathbf{G} \neq 0 \end{array}\right. ε(G)={fεA+(1f)εB(εAεB)P(G)G=0G=0
各参数代表的含义和上述相同。
P ( G ⃗ ) = 2 F d J 1 ( ( L x G x ′ ) 2 + ( L y G y ′ ) 2 ) ( L x G x ′ ) 2 + ( L y G y ′ ) 2  where  ( G x ′ G y ′ ) = ( cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ) ( G x G y ) \begin{aligned} &P(\vec{G})=\frac{2 F_{d} J_{1}\left(\sqrt{\left(L_{x} G_{x}^{\prime}\right)^{2}+\left(L_{y} G_{y}^{\prime}\right)^{2}}\right)}{\sqrt{\left(L_{x} G_{x}^{\prime}\right)^{2}+\left(L_{y} G_{y}^{\prime}\right)^{2}}}\\ &\text { where }\\ &\left(\begin{array}{l} G_{x}^{\prime} \\ G_{y}^{\prime} \end{array}\right)=\left(\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right)\left(\begin{array}{l} G_{x} \\ G_{y} \end{array}\right) \end{aligned} P(G )=(LxGx)2+(LyGy)2 2FdJ1((LxGx)2+(LyGy)2 ) where (GxGy)=(cosθsinθsinθcosθ)(GxGy)
其中,其中Lx是椭圆沿x方向的半轴,Ly是椭圆沿y方向的半轴, θ \theta θ是椭圆的夹角。 J 1 J_{1} J1是一阶贝塞尔函数, F d = F_{d}= Fd= π L x L y / S cell  \pi L_{x} L_{y} / S_{\text {cell }} πLxLy/Scell  S cell  S_{\text {cell }} Scell 是正格子原胞面积。

参考文献:
Feng Y , Wu F , Zhong H , et al. Defect modes created by an elliptic defect in two-dimensional triangular photonic crystals[J]. Solid State Communications, 2007, 142(4):223-227.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值