Python中的Scikit-learn机器学习算法

465 篇文章 127 订阅 ¥39.90 ¥99.00
本文介绍了Python的Scikit-learn库中的三种常用机器学习算法:K最近邻(KNN)、决策树和支持向量机(SVM),并提供了相关代码示例。
摘要由CSDN通过智能技术生成

机器学习是一种通过训练模型来自动完成特定任务的技术。Python中的Scikit-learn(简称sklearn)是一个强大的机器学习库,它提供了丰富的工具和算法,用于构建和应用各种机器学习模型。本文将介绍一些常用的Scikit-learn机器学习算法,并提供相应的源代码示例。

  1. K最近邻算法(K-Nearest Neighbors,KNN)
    K最近邻算法是一种基本的分类和回归方法。它的原理是通过计算新样本与训练数据中的样本之间的距离,找到最近的K个邻居,并根据它们的标签进行预测。下面是一个使用KNN算法进行分类的示例:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值