retinaface 检查增强 data_augment

这篇博客介绍了在使用RetinaFace进行目标检测时的数据增强策略,包括图像裁剪后的增强操作,如放大、缩小以及在宽高不一致时进行的粘贴增强。为确保适应不同尺寸的图像,通过将标签按比例转换为小数,有效解决了缩放过程中可能遇到的问题。

crop后,有增强,有放大,有缩小

宽高不齐的话会做粘贴增强,不够img_size会做放大缩小增强

标签除以宽高,变成小数,就解决了缩放问题。

import cv2
import numpy as np
import random
from utils.box_utils import matrix_iof


def _crop(image, boxes, labels, img_size):
    #随意裁剪,裁剪到最后resize,会有放大效果,不会缩小,小目标检测无帮助
    height, width, _ = image.shape
    pad_image_flag = True

    if boxes[0][3] == 0 or boxes[0][2] - boxes[0][0] == 0 or boxes[0][3] - boxes[0][1] == 0:
        scale = random.uniform(0.3, 1.0)
        short_side = min(width, height)
        crop_width = int(scale * short_side)

        crop_left = 0
        if width != crop_width:
            crop_left = random.randrange(width - crop_width)
        crop_top = 0
        if height != crop_width:
            crop_top = random.randr
Transferred 355/355 items from pretrained weights New https://pypi.org/project/ultralytics/8.3.99 available 😃 Update with 'pip install -U ultralytics' Ultralytics 8.3.88 🚀 Python-3.8.8 torch-2.4.1+cpu CPU (Intel Xeon Silver 4216 2.10GHz) engine\trainer: task=detect, mode=train, model=yolov8n.yaml, data=datasets/bvn/lw.yaml, epochs=100, time=None, patience=100, batch=4, imgsz=640, save=True, save_ period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=ultralytics/yolov8n.pt, optimizer=auto, verbose=True, seed= 0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=None, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale= False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=Fa lse, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None , show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=tor chscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weigh t_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v =0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train3 Traceback (most recent call last): File "d:\lammps\anaconda\lib\site-packages\ultralytics\engine\trainer.py", line 570, in get_dataset data = check_det_dataset(self.args.dat
04-01
D:\X\Anaconda\python.exe E:\中国四维\四维世景科技(北京)有限公司\AI学习\YOLOv12\DWSB\YOLOv12-train.py OpenCV版本: 4.12.0 YOLO导入成功! NumPy版本: 1.26.4 PyTorch版本: 2.7.1+cu118 CUDA是否可用: True 模型加载成功! Ultralytics 8.3.203 Python-3.12.4 torch-2.7.1+cu118 CUDA:0 (GeForce GTX 1650, 4096MiB) engine\trainer: agnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=1, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, compile=False, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=E:\\\AI\YOLOv12\DWSB\dataset\DOTA.yaml, degrees=0.0, deterministic=True, device=None, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=2, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=E:\\\AI\YOLOv12\yolo12x.pt\yolo12x.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=exp, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=runs/train, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=E:\\\AI\YOLOv12\DWSB\runs\train\exp, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=0, workspace=None Overriding model.yaml nc=80 with nc=15 from n params module arguments 0 -1 1 2784 ultralytics.nn.modules.conv.Conv [3, 96, 3, 2] 1 -1 1 166272 ultralytics.nn.modules.conv.Conv [96, 192, 3, 2] 2 -1 2 389760 ultralytics.nn.modules.block.C3k2 [192, 384, 2, True, 0.25] 3 -1 1 1327872 ultralytics.nn.modules.conv.Conv [384, 384, 3, 2] 4 -1 2 1553664 ultralytics.nn.modules.block.C3k2 [384, 768, 2, True, 0.25] 5 -1 1 5309952 ultralytics.nn.modules.conv.Conv [768, 768, 3, 2] 6 -1 4 9512128 ultralytics.nn.modules.block.A2C2f [768, 768, 4, True, 4, True, 1.2] 7 -1 1 5309952 ultralytics.nn.modules.conv.Conv [768, 768, 3, 2] 8 -1 4 9512128 ultralytics.nn.modules.block.A2C2f [768, 768, 4, True, 1, True, 1.2] 9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 10 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] 11 -1 2 4727040 ultralytics.nn.modules.block.A2C2f [1536, 768, 2, False, -1, True, 1.2] 12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 13 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] 14 -1 2 1331328 ultralytics.nn.modules.block.A2C2f [1536, 384, 2, False, -1, True, 1.2] 15 -1 1 1327872 ultralytics.nn.modules.conv.Conv [384, 384, 3, 2] 16 [-1, 11] 1 0 ultralytics.nn.modules.conv.Concat [1] 17 -1 2 4579584 ultralytics.nn.modules.block.A2C2f [1152, 768, 2, False, -1, True, 1.2] 18 -1 1 5309952 ultralytics.nn.modules.conv.Conv [768, 768, 3, 2] 19 [-1, 8] 1 0 ultralytics.nn.modules.conv.Concat [1] 20 -1 2 5612544 ultralytics.nn.modules.block.C3k2 [1536, 768, 2, True] 21 [14, 17, 20] 1 3162877 ultralytics.nn.modules.head.Detect [15, [384, 768, 768]] YOLOv12x summary: 488 layers, 59,135,709 parameters, 59,135,693 gradients, 199.9 GFLOPs Transferred 1239/1245 items from pretrained weights Freezing layer 'model.21.dfl.conv.weight' WARNING AMP: checks failed . AMP training on GeForce GTX 1650 GPU may cause NaN losses or zero-mAP results, so AMP will be disabled during training. train: Fast image access (ping: 0.20.0 ms, read: 1120.6703.8 MB/s, size: 7096.4 KB) train: Scanning E:\中国四维\四维世景科技(北京)有限公司\AI学习\YOLOv12\DWSB\dataset\labels\train... 100 images, 0 backgrounds, 100 corrupt: 100% ━━━━━━━━━━━━ 100/100 31.3it/s 3.2s train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0000.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0001.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0002.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0005.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0008.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0010.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0011.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0012.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0013.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0018.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0020.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0021.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0022.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0023.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0025.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0029.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0030.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0032.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0036.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0038.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0039.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0041.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0042.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0044.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0049.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0050.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0052.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0054.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0058.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0061.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0063.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0064.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0065.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0066.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0067.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0068.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0070.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0071.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0074.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0076.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0078.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0082.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0083.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0085.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0087.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0091.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0093.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0094.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0095.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0096.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0098.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0099.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0100.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0103.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0109.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0111.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0113.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0116.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0119.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0122.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0124.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0126.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0129.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0133.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0136.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0139.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0140.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0141.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0142.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0144.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0147.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0149.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0151.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0152.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0158.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0159.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0160.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0162.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0163.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0164.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0167.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0169.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0171.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0172.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0174.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0176.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0178.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0183.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0187.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0188.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0190.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0200.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0201.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0202.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0203.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0204.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0207.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0209.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0210.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' train: E:\\\AI\YOLOv12\DWSB\dataset\images\train\P0212.png: ignoring corrupt image/label: could not convert string to float: 'imagesource:GoogleEarth' Traceback (most recent call last): File "E:\中国四维\四维世景科技(北京)有限公司\AI学习\YOLOv12\DWSB\YOLOv12-train.py", line 44, in <module> model.train( File "D:\X\Anaconda\Lib\site-packages\ultralytics\engine\model.py", line 800, in train self.trainer.train() File "D:\X\Anaconda\Lib\site-packages\ultralytics\engine\trainer.py", line 235, in train self._do_train() File "D:\X\Anaconda\Lib\site-packages\ultralytics\engine\trainer.py", line 360, in _do_train self._setup_train() File "D:\X\Anaconda\Lib\site-packages\ultralytics\engine\trainer.py", line 319, in _setup_train self.train_loader = self.get_dataloader( ^^^^^^^^^^^^^^^^^^^^ File "D:\X\Anaconda\Lib\site-packages\ultralytics\models\yolo\detect\train.py", line 97, in get_dataloader dataset = self.build_dataset(dataset_path, mode, batch_size) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\X\Anaconda\Lib\site-packages\ultralytics\models\yolo\detect\train.py", line 80, in build_dataset return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\X\Anaconda\Lib\site-packages\ultralytics\data\build.py", line 134, in build_yolo_dataset return dataset( ^^^^^^^^ File "D:\X\Anaconda\Lib\site-packages\ultralytics\data\dataset.py", line 90, in __init__ super().__init__(*args, channels=self.data.get("channels", 3), **kwargs) File "D:\X\Anaconda\Lib\site-packages\ultralytics\data\base.py", line 118, in __init__ self.labels = self.get_labels() ^^^^^^^^^^^^^^^^^ File "D:\X\Anaconda\Lib\site-packages\ultralytics\data\dataset.py", line 190, in get_labels raise RuntimeError( RuntimeError: No valid images found in E:\中国四维\四维世景科技(北京)有限公司\AI学习\YOLOv12\DWSB\dataset\labels\train.cache. Images with incorrectly formatted labels are ignored. See https://docs.ultralytics.com/datasets for dataset formatting guidance. train: New cache created: E:\\\AI\YOLOv12\DWSB\dataset\labels\train.cache Process finished with exit code 1
最新发布
10-01
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值