RDSNet笔记
本文设计了一个双流结构来共同学习目标级(BBox)和像素级(分割掩膜)特征。在这个结构中来自两个流的信息交替融合,即目标级别的信息将实例和位移信息引入到了像素级别,而像素级别的信息则改善了目标级别上的定位精度。
具体来说,一个相关性模块和一个剪切模块被提出来生成实例掩膜,另外提出了一个基于掩膜的精炼边界框模块。在COCO数据集上进行的大量实验分析和比较证明了RDSNet的有效性。
RDSNet笔记
本文设计了一个双流结构来共同学习目标级(BBox)和像素级(分割掩膜)特征。在这个结构中来自两个流的信息交替融合,即目标级别的信息将实例和位移信息引入到了像素级别,而像素级别的信息则改善了目标级别上的定位精度。
具体来说,一个相关性模块和一个剪切模块被提出来生成实例掩膜,另外提出了一个基于掩膜的精炼边界框模块。在COCO数据集上进行的大量实验分析和比较证明了RDSNet的有效性。