分组卷积

本文详细介绍了分组卷积(Group Convolution)的概念,起源于AlexNet,并对比了它与常规卷积的区别。通过分组,Group Convolution能有效减少参数量,实现结构化的稀疏性,有时甚至能提升模型性能。当分组数等于输入通道数时,Group Convolution转化为Depthwise Convolution,进一步减少参数。此外,还提到了Global Depthwise Convolution在特定场景的应用,如MobileFaceNet中的全局加权池化。
摘要由CSDN通过智能技术生成

 

Group Convolution分组卷积,最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下:

 

Convolution VS Group Convolution

在介绍Group Convolution前,先回顾下常规卷积是怎么做的,具体可以参见博文《卷积神经网络之卷积计算、作用与思想》。如果输入feature map尺寸为C∗H∗WC∗H∗W,卷积核有NN个,输出feature map与卷积核的数量相同也是NN,每个卷积核的尺寸为C∗K∗KC∗K∗K,NN个卷积核的总参数量为N∗C∗K∗KN∗C∗K∗K,输入map与输出map的连接方式如下图左所示,图片来自链接

Convolution VS Group Convolution

Group Convolution顾名思义,则是对输入feature map进行分组,然后每组分别卷积。假设输入feature map的尺寸仍为C∗H∗WC∗H∗W,输出feature map的数量为NN个,如果设定要分成GG个groups,则每组的输入feature map数量为CGCG,每组的输出feature map数量为NGNG,每个卷积核的尺寸为CG∗K∗KCG∗K∗K,卷积核的总数仍为NN个,每组的卷积核数量为NGNG,卷积核只与其同组的输入map进行卷积,卷积核的总参数量为N∗CG∗K∗KN∗CG∗K∗K,可见,总参数量减少为原来的 1G1G,其连接方式如上图右所示,group1输出map数为2,有2个卷积核,每个卷积核的channel数为4,与group1的输入map的channel数相同,卷积核只与同组的输入map卷积,而不与其他组的输入map卷积。

Group Convolution的用途

  1. 减少参数量,分成GG组,则该层的参数量减少为原来的1G1G
  2. Group Convolution可以看成是structured sparse,每个卷积核的尺寸由C∗K∗KC∗K∗K变为CG∗K∗KCG∗K∗K,可以将其余(C−CG)∗K∗K(C−CG)∗K∗K的参数视为0,有时甚至可以在减少参数量的同时获得更好的效果(相当于正则)。
  3. 当分组数量等于输入map数量,输出map数量也等于输入map数量,即G=N=CG=N=C、NN个卷积核每个尺寸为1∗K∗K1∗K∗K时,Group Convolution就成了Depthwise Convolution,参见MobileNetXception等,参数量进一步缩减,如下图所示
    Depthwise Separable Convolution
  4. 更进一步,如果分组数G=N=CG=N=C,同时卷积核的尺寸与输入map的尺寸相同,即K=H=WK=H=W,则输出map为C∗1∗1C∗1∗1即长度为CC的向量,此时称之为Global Depthwise Convolution(GDC),见MobileFaceNet,可以看成是全局加权池化,与 Global Average Pooling(GAP) 的不同之处在于,GDC 给每个位置赋予了可学习的权重(对于已对齐的图像这很有效,比如人脸,中心位置和边界位置的权重自然应该不同),而GAP每个位置的权重相同,全局取个平均,如下图所示:

 

以上。

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值