python生成 coco 关键点标注数据

import json
import os
import cv2  # 用于读取图像尺寸

# 假设你有以下结构
# your_data = [
#   {"file_name": "000000000001.jpg", "keypoints": [...], "bbox": [...]},
#   ...
# ]

your_data = [...]  # 你的数据列表,每项包含 file_name、keypoints 和 bbox

output = {
    "images": [],
    "annotations": [],
    "categories": [
        {
            "id": 1,
            "name": "person",
            "supercategory": "person",
            "keypoints": [
                "nose", "left_eye", "right_eye", "left_ear", "right_ear",
                "left_shoulder", "right_shoulder", "left_elbow", "right_elbow",
                "left_wrist", "right_wrist", "left_hip", "right_hip",
                "left_knee", "right_knee", "left_ankle", "right_ankle"
            ],
            "skeleton": [
                [16,14],[14,12],[17,15],[15,13],
                [12,13],[6,12],[7,13],[6,7],[6,8],
                [7,9],[8,10],[9,11],[2,3],[1,2],[1,3],
                [2,4],[3,5],[4,6],[5,7]
            ]
        }
    ]
}

for idx, item in enumerate(your_data):
    file_path = os.path.join("your/images/dir", item["file_name"])
    
    # 读取图片尺寸
    img = cv2.imread(file_path)
    height, width = img.shape[:2]

    # 图像元数据
    image_id = idx + 1
    output["images"].append({
        "id": image_id,
        "file_name": item["file_name"],
        "width": width,
        "height": height
    })

    # 注释数据
    keypoints = item["keypoints"]  # 长度应为 51 (17 x 3)
    num_keypoints = sum(1 for i in range(2, len(keypoints), 3) if keypoints[i] > 0)

    output["annotations"].append({
        "id": image_id,
        "image_id": image_id,
        "category_id": 1,
        "keypoints": keypoints,
        "num_keypoints": num_keypoints,
        "bbox": item["bbox"],  # COCO格式是[x, y, width, height]
        "area": item["bbox"][2] * item["bbox"][3],
        "iscrowd": 0
    })

# 保存为 JSON 文件
with open("person_keypoints_val2014.json", "w") as f:
    json.dump(output, f, indent=2)

<think>好的,用户想了解如何使用Labelme生成COCO关键点数据集,需要教程或脚本。首先,我需要回忆一下Labelme和COCO数据集的相关知识。 Labelme是一个常用的图像标注工具,支持多边形、矩形、点等多种标注类型。而COCO数据集的关键点格式要求每个关键点有坐标和可见性标签,通常包括x、y坐标和visibility(0=未标记,1=可见但被遮挡,2=可见且未遮挡)。此外,COCO的annotations中每个关键点实例需要包含类别id、关键点坐标列表、以及每个关键点的可见性状态。 用户可能已经用Labelme标注关键点,现在需要将Labelme的JSON文件转换为COCO格式。根据提供的引用,特别是引用[1]、[3]、[4],似乎有现成的脚本可以完成这个转换,比如labelme2coco.py或其变体。比如用户提到labelme2coco_v2.py可能是一个改进版本,需要确认这些脚本是否支持关键点的转换。 需要检查这些脚本是否处理关键点。通常,Labelme的标注信息中,每个shape的points字段保存了点的坐标,而COCO关键点需要将这些点按顺序排列,并记录可见性。如果原脚本不支持,可能需要修改脚本,添加关键点处理的部分。例如,遍历每个标注对象,提取点信息,并映射到COCO的keypoints字段中。 另外,用户可能需要确保标注时在Labelme中正确标记关键点的类别和顺序,因为COCO要求关键点的顺序一致。例如,人体的17个关键点有固定顺序,用户自定义的关键点需要定义自己的类别和顺序。 还需要注意图片ID和标注ID的唯一性,以及categories部分是否正确包含关键点类别和对应的关键点名称及骨架连接信息。引用[3]和[4]提到将Labelme转化为COCO格式的方法,可能涉及这些结构的调整。 最后,用户可能需要运行脚本并验证生成COCO JSON文件是否符合标准,比如使用COCO API验证是否正确加载。如果有错误,可能需要调试脚本,确保坐标转换正确,可见性处理得当。</think>### 使用Labelme生成COCO关键点数据集的分步指南 #### 一、Labelme标注规范 1. 标注文件结构 ``` dataset/ ├── images/ # 存放原始图片 └── annotations/ # 存放labelme生成的json文件 ``` 2. 关键点标注要求 - 每个关键点使用`points`类型标注 - 必须包含`label`字段,命名规范如`person_kp1`(主体_关键点名称) - 建议添加`visibility`属性:0=未标记,1=遮挡,2=可见[^3] #### 二、转换脚本使用 推荐使用改进版转换脚本`labelme2coco_v2.py`[^1]: ```bash python labelme2coco_v2.py \ --input_dir annotations/ \ --output_dir coco/ \ --keypoints ["nose","left_eye","right_eye"] # 自定义关键点名称 ``` #### 三、关键配置说明 1. 类别映射文件示例(categories.json): ```json { "person": { "id": 1, "keypoints": ["nose", "left_eye", "right_eye"], "skeleton": [[0,1],[1,2]] } } ``` 2. 输出目录结构 ``` coco/ ├── annotations/ │ └── instances.json # COCO格式标注文件 └── train2017/ # 图片硬链接目录 ``` #### 四、验证生成结果 使用COCO API验证: ```python from pycocotools.coco import COCO coco = COCO('coco/annotations/instances.json') print(coco.dataset['categories']) ``` #### 五、常见问题解决 1. **关键点顺序不一致**:检查标注时标签命名是否与categories.json完全匹配 2. **可见性参数丢失**:需在labelme标注时通过`flags`字段添加可见性属性[^4] 3. **坐标转换错误**:确认脚本中是否包含坐标归一化处理(x/width, y/height)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值