coco mask处理

目录

coco可视化:


coco可视化:

import pycocotools
from pycocotools.coco import COCO
import numpy as np
if __name__ == '__main__':

    DATA_ROOT=r"C:\Users\Administrator\Documents\工具\output\output\video_1"
    coco_filepath = r"C:\Users\Administrator\Documents\工具\output\output\video_1\person_keypoints.json"
    coco = COCO(coco_filepath)

    impath_to_examples = {}
    for ann in coco.anns.values():
        filename = coco.imgs[ann['image_id']]['file_name']
        image_path = f'{DATA_ROOT}/images/{filename}'

        joints = np.array(ann['keypoints']).reshape([-1, 3])
        visibilities = joints[:, 2]
        coords = joints[:, :2].astype(np.float32).copy()

import pycocotools._mask as _mask

frPyObjects = _mask.frPyObjects


segm = ann['segmentation']
if type(segm) == list:
    # polygon -- a single object might consist of multiple parts
    # we merge all parts into one mask rle code
    rles = maskUtils.frPyObjects(segm, h, w)
    rle = maskUtils.merge(rles)
elif type(segm['counts']) == list:
    # uncompressed RLE
    rle = maskUtils.frPyObjects(segm, h, w)
else:
    # rle
    rle = ann['segmentation']
return rle

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值